These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 11410946)

  • 1. Cramér-Rao bounds: an evaluation tool for quantitation.
    Cavassila S; Deval S; Huegen C; van Ormondt D; Graveron-Demilly D
    NMR Biomed; 2001 Jun; 14(4):278-83. PubMed ID: 11410946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The beneficial influence of prior knowledge on the quantitation of in vivo magnetic resonance spectroscopy signals.
    Cavassila S; Deval S; Huegen C; Van Ormondt D; Graveron-Demilly D
    Invest Radiol; 1999 Mar; 34(3):242-6. PubMed ID: 10084671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cramer-Rao bound expressions for parametric estimation of overlapping peaks: influence of prior knowledge.
    Cavassila S; Deval S; Huegen C; van Ormondt D ; Graveron-Demilly D
    J Magn Reson; 2000 Apr; 143(2):311-20. PubMed ID: 10729257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biased Cramér-Rao lower bound calculations for inequality-constrained estimators.
    Matson CL; Haji A
    J Opt Soc Am A Opt Image Sci Vis; 2006 Nov; 23(11):2702-13. PubMed ID: 17047695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved quantification precision of human brain short echo-time (1) H magnetic resonance spectroscopy at high magnetic field: a simulation study.
    Deelchand DK; Iltis I; Henry PG
    Magn Reson Med; 2014 Jul; 72(1):20-5. PubMed ID: 23900976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Are Cramér-Rao lower bounds an accurate estimate for standard deviations in in vivo magnetic resonance spectroscopy?
    Landheer K; Juchem C
    NMR Biomed; 2021 Jul; 34(7):e4521. PubMed ID: 33876459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the use of Cramér-Rao minimum variance bounds for the design of magnetic resonance spectroscopy experiments.
    Bolliger CS; Boesch C; Kreis R
    Neuroimage; 2013 Dec; 83():1031-40. PubMed ID: 23933043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative magnetic resonance spectroscopy: semi-parametric modeling and determination of uncertainties.
    Elster C; Schubert F; Link A; Walzel M; Seifert F; Rinneberg H
    Magn Reson Med; 2005 Jun; 53(6):1288-96. PubMed ID: 15906296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic quantitation of localized in vivo 1H spectra with LCModel.
    Provencher SW
    NMR Biomed; 2001 Jun; 14(4):260-4. PubMed ID: 11410943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The trouble with quality filtering based on relative Cramér-Rao lower bounds.
    Kreis R
    Magn Reson Med; 2016 Jan; 75(1):15-8. PubMed ID: 25753153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting minimum uncertainties in the inversion of ocean color geophysical parameters based on Cramer-Rao bounds.
    Jay S; Guillaume M; Chami M; Minghelli A; Deville Y; Lafrance B; Serfaty V
    Opt Express; 2018 Jan; 26(2):A1-A18. PubMed ID: 29402051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cramer-rao bounds and coherence performance analysis for next generation radar with pulse trains.
    Tang X; Tang J; He Q; Wan S; Tang B; Sun P; Zhang N
    Sensors (Basel); 2013 Apr; 13(4):5347-67. PubMed ID: 23612588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measures of performance in nonlinear estimation tasks: prediction of estimation performance at low signal-to-noise ratio.
    Müller SP; Abbey CK; Rybicki FJ; Moore SC; Kijewski MF
    Phys Med Biol; 2005 Aug; 50(16):3697-715. PubMed ID: 16077222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Achievable accuracy of parameter estimation for multidimensional NMR experiments.
    Ober RJ; Lin Z; Ye H; Ward ES
    J Magn Reson; 2002 Jul; 157(1):1-16. PubMed ID: 12202128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cramér-Rao bounds on the performance of simulated annealing and genetic algorithms in EEG source localization.
    Escalona-Vargas DI; Gutiérrez D; Lopez-Arevalo I
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7115-8. PubMed ID: 22255978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Covariance-based approaches to aeroacoustic noise source analysis.
    Du L; Xu L; Li J; Guo B; Stoica P; Bahr C; Cattafesta LN
    J Acoust Soc Am; 2010 Nov; 128(5):2877-87. PubMed ID: 21110583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Error images for spectroscopic imaging by LCModel using Cramer-Rao bounds.
    Jiru F; Skoch A; Klose U; Grodd W; Hajek M
    MAGMA; 2006 Feb; 19(1):1-14. PubMed ID: 16416324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bounds of parameter estimation for interference signals.
    Li C; Zhu Y
    Appl Opt; 2017 Aug; 56(24):6867-6872. PubMed ID: 29048026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchies of Frequentist Bounds for Quantum Metrology: From Cramér-Rao to Barankin.
    Gessner M; Smerzi A
    Phys Rev Lett; 2023 Jun; 130(26):260801. PubMed ID: 37450793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical range precision obtained by maximum likelihood estimation in laser radar compared with the Cramer-Rao bound.
    Gu Z; Lai J; Wang C; Yan W; Ji Y; Li Z
    Appl Opt; 2018 Dec; 57(34):9951-9957. PubMed ID: 30645251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.