These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
76 related articles for article (PubMed ID: 11412138)
1. The role of Ca2+ and calmodulin in insulin signalling in mammalian skeletal muscle. Bruton JD; Katz A; Westerblad H Acta Physiol Scand; 2001 Mar; 171(3):259-65. PubMed ID: 11412138 [TBL] [Abstract][Full Text] [Related]
2. Contraction- and hypoxia-stimulated glucose transport is mediated by a Ca2+-dependent mechanism in slow-twitch rat soleus muscle. Wright DC; Geiger PC; Holloszy JO; Han DH Am J Physiol Endocrinol Metab; 2005 Jun; 288(6):E1062-6. PubMed ID: 15657088 [TBL] [Abstract][Full Text] [Related]
3. Insulin increases near-membrane but not global Ca2+ in isolated skeletal muscle. Bruton JD; Katz A; Westerblad H Proc Natl Acad Sci U S A; 1999 Mar; 96(6):3281-6. PubMed ID: 10077675 [TBL] [Abstract][Full Text] [Related]
4. Rutin potentiates calcium uptake via voltage-dependent calcium channel associated with stimulation of glucose uptake in skeletal muscle. Kappel VD; Zanatta L; Postal BG; Silva FR Arch Biochem Biophys; 2013 Apr; 532(2):55-60. PubMed ID: 23395857 [TBL] [Abstract][Full Text] [Related]
5. Uniaxial cyclic stretch-stimulated glucose transport is mediated by a ca-dependent mechanism in cultured skeletal muscle cells. Iwata M; Hayakawa K; Murakami T; Naruse K; Kawakami K; Inoue-Miyazu M; Yuge L; Suzuki S Pathobiology; 2007; 74(3):159-68. PubMed ID: 17643061 [TBL] [Abstract][Full Text] [Related]
6. The role of Ca2+ influx for insulin-mediated glucose uptake in skeletal muscle. Lanner JT; Katz A; Tavi P; Sandström ME; Zhang SJ; Wretman C; James S; Fauconnier J; Lännergren J; Bruton JD; Westerblad H Diabetes; 2006 Jul; 55(7):2077-83. PubMed ID: 16804078 [TBL] [Abstract][Full Text] [Related]
7. PKC-mediated modulation of L-type calcium channels may contribute to fat-induced insulin resistance. McCarty MF Med Hypotheses; 2006; 66(4):824-31. PubMed ID: 16307847 [TBL] [Abstract][Full Text] [Related]
8. Intracellular mechanisms underlying increases in glucose uptake in response to insulin or exercise in skeletal muscle. Ryder JW; Chibalin AV; Zierath JR Acta Physiol Scand; 2001 Mar; 171(3):249-57. PubMed ID: 11412137 [TBL] [Abstract][Full Text] [Related]
9. Regulation of glucose transporters by insulin and extracellular glucose in C2C12 myotubes. Nedachi T; Kanzaki M Am J Physiol Endocrinol Metab; 2006 Oct; 291(4):E817-28. PubMed ID: 16735448 [TBL] [Abstract][Full Text] [Related]
10. Calcium transport systems in cardiac sarcolemma and their regulation by the second messengers cyclic AMP and calcium-calmodulin. Lamers JM Gen Physiol Biophys; 1985 Apr; 4(2):143-54. PubMed ID: 2993098 [TBL] [Abstract][Full Text] [Related]
11. WY-14643 and 9- cis-retinoic acid induce IRS-2/PI 3-kinase signalling pathway and increase glucose transport in human skeletal muscle cells: differential effect in myotubes from healthy subjects and Type 2 diabetic patients. Bouzakri K; Roques M; Debard C; Berbe V; Rieusset J; Laville M; Vidal H Diabetologia; 2004 Jul; 47(7):1314-23. PubMed ID: 15292987 [TBL] [Abstract][Full Text] [Related]
12. Role of the AMPKgamma3 isoform in hypoxia-stimulated glucose transport in glycolytic skeletal muscle. Deshmukh AS; Glund S; Tom RZ; Zierath JR Am J Physiol Endocrinol Metab; 2009 Dec; 297(6):E1388-94. PubMed ID: 19826102 [TBL] [Abstract][Full Text] [Related]
13. Cardamonin stimulates glucose uptake through translocation of glucose transporter-4 in L6 myotubes. Yamamoto N; Kawabata K; Sawada K; Ueda M; Fukuda I; Kawasaki K; Murakami A; Ashida H Phytother Res; 2011 Aug; 25(8):1218-24. PubMed ID: 21305634 [TBL] [Abstract][Full Text] [Related]
14. Alterations in calcium signaling and cellular responses in septic injury. Sayeed MM New Horiz; 1996 Feb; 4(1):72-86. PubMed ID: 8689277 [TBL] [Abstract][Full Text] [Related]
15. Calmodulin-binding domain of AS160 regulates contraction- but not insulin-stimulated glucose uptake in skeletal muscle. Kramer HF; Taylor EB; Witczak CA; Fujii N; Hirshman MF; Goodyear LJ Diabetes; 2007 Dec; 56(12):2854-62. PubMed ID: 17717281 [TBL] [Abstract][Full Text] [Related]
16. Calcium homeostasis and glucose uptake of murine myotubes exposed to insulin, caffeine and 4-chloro-m-cresol. Freymond D; Guignet R; Lhote P; Passaquin AC; Rüegg UT Acta Physiol Scand; 2002 Dec; 176(4):283-92. PubMed ID: 12444934 [TBL] [Abstract][Full Text] [Related]
17. Domain-dependent modulation of insulin-induced AS160 phosphorylation and glucose uptake by Ca2+/calmodulin-dependent protein kinase II in L6 myotubes. Mohankumar SK; Taylor CG; Zahradka P Cell Signal; 2012 Jan; 24(1):302-8. PubMed ID: 21964065 [TBL] [Abstract][Full Text] [Related]
18. Functional role of store-operated and stretch-activated channels in murine adult skeletal muscle fibres. Ducret T; Vandebrouck C; Cao ML; Lebacq J; Gailly P J Physiol; 2006 Sep; 575(Pt 3):913-24. PubMed ID: 16825296 [TBL] [Abstract][Full Text] [Related]
19. Regulatory systems for the cytoplasmic calcium concentration in smooth muscle. Casteels R; Wuytack F; Himpens B; Raeymaekers L Biomed Biochim Acta; 1986; 45(1-2):S147-52. PubMed ID: 2421711 [TBL] [Abstract][Full Text] [Related]
20. Resistin inhibits glucose uptake in L6 cells independently of changes in insulin signaling and GLUT4 translocation. Moon B; Kwan JJ; Duddy N; Sweeney G; Begum N Am J Physiol Endocrinol Metab; 2003 Jul; 285(1):E106-15. PubMed ID: 12618360 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]