BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 11412231)

  • 1. The interaction of nitric oxide and prostaglandins in the control of corporal smooth muscle tone: evidence for production of a cyclooxygenase-derived endothelium-contracting factor.
    Minhas S; Cartledge JJ; Eardley I; Joyce AD; Morrison JF
    BJU Int; 2001 Jun; 87(9):882-8. PubMed ID: 11412231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Basal and acetylcholine-stimulated nitric oxide formation mediates relaxation of rabbit cavernous smooth muscle.
    Knispel HH; Goessl C; Beckmann R
    J Urol; 1991 Nov; 146(5):1429-33. PubMed ID: 1942315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endothelium-derived nitric oxide and cyclooxygenase products modulate corpus cavernosum smooth muscle tone.
    Azadzoi KM; Kim N; Brown ML; Goldstein I; Cohen RA; Saenz de Tejada I
    J Urol; 1992 Jan; 147(1):220-5. PubMed ID: 1370329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of nitric oxide-like activity by prostanoids in smooth muscle of the canine saphenous vein.
    Illiano S; Marsault R; Descombes JJ; Verbeuren T; Vanhoutte PM
    Br J Pharmacol; 1996 Jan; 117(2):360-4. PubMed ID: 8789391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of vasoactive intestinal polypeptide (VIP)-mediated relaxation by nitric oxide and prostanoids in the rabbit corpus cavernosum.
    Kim YC; Kim JH; Davies MG; Hagen PO; Carson CC
    J Urol; 1995 Mar; 153(3 Pt 1):807-10. PubMed ID: 7861544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A nitric oxide-like factor mediates nonadrenergic-noncholinergic neurogenic relaxation of penile corpus cavernosum smooth muscle.
    Kim N; Azadzoi KM; Goldstein I; Saenz de Tejada I
    J Clin Invest; 1991 Jul; 88(1):112-8. PubMed ID: 1647413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of K+ channels and ouabain-sensitive mechanisms to the endothelium-dependent relaxations of horse penile small arteries.
    Prieto D; Simonsen U; Hernández M; García-Sacristán A
    Br J Pharmacol; 1998 Apr; 123(8):1609-20. PubMed ID: 9605568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autacoids mediate coronary vasoconstriction induced by nitric oxide synthesis inhibition.
    Pomposiello S; Yang XP; Liu YH; Surakanti M; Rhaleb NE; Sevilla M; Carretero OA
    J Cardiovasc Pharmacol; 1997 Nov; 30(5):599-606. PubMed ID: 9388042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The relaxation mechanisms of tetrandrine on the rabbit corpus cavernosum tissue in vitro.
    Chen J; Liu J; Wang T; Xiao H; Yin C; Yang J; Chen X; Ye Z
    Nat Prod Res; 2009; 23(2):112-21. PubMed ID: 19173119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of prostaglandins in acetylcholine-induced contraction of aorta from spontaneously hypertensive and Wistar-Kyoto rats.
    Rapoport RM; Williams SP
    Hypertension; 1996 Jul; 28(1):64-75. PubMed ID: 8675266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical stretch reveals different components of endothelial-mediated vascular tone in rat aortic strips.
    Franchi-Micheli S; Failli P; Mazzetti L; Bani D; Ciuffi M; Zilletti L
    Br J Pharmacol; 2000 Dec; 131(7):1355-62. PubMed ID: 11090107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impairment of corpus cavernosal smooth muscle relaxation by glycosylated human haemoglobin.
    Cartledge JJ; Eardley I; Morrison JF
    BJU Int; 2000 Apr; 85(6):735-41. PubMed ID: 10759676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endothelium-derived relaxing, contracting and hyperpolarizing factors of mesenteric arteries of hypertensive and normotensive rats.
    Sunano S; Watanabe H; Tanaka S; Sekiguchi F; Shimamura K
    Br J Pharmacol; 1999 Feb; 126(3):709-16. PubMed ID: 10188983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endothelium-dependent relaxation to acetylcholine in bovine oviductal arteries: mediation by nitric oxide and changes in apamin-sensitive K+ conductance.
    García-Pascual A; Labadía A; Jimenez E; Costa G
    Br J Pharmacol; 1995 Aug; 115(7):1221-30. PubMed ID: 7582549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen peroxide is an endothelium-dependent contracting factor in rat renal artery.
    Gao YJ; Lee RM
    Br J Pharmacol; 2005 Dec; 146(8):1061-8. PubMed ID: 16231001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endothelium-dependent relaxation by substance P in human isolated omental arteries and veins: relative contribution of prostanoids, nitric oxide and hyperpolarization.
    Wallerstedt SM; Bodelsson M
    Br J Pharmacol; 1997 Jan; 120(1):25-30. PubMed ID: 9117094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitric oxide, prostanoid and non-NO, non-prostanoid involvement in acetylcholine relaxation of isolated human small arteries.
    Buus NH; Simonsen U; Pilegaard HK; Mulvany MJ
    Br J Pharmacol; 2000 Jan; 129(1):184-92. PubMed ID: 10694219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide pathway-mediated relaxant effect of bradykinin in the guinea-pig isolated trachea.
    Schlemper V; Calixto JB
    Br J Pharmacol; 1994 Jan; 111(1):83-8. PubMed ID: 8012728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impaired endothelium-dependent relaxation in isolated resistance arteries of spontaneously diabetic rats.
    Heygate KM; Lawrence IG; Bennett MA; Thurston H
    Br J Pharmacol; 1995 Dec; 116(8):3251-9. PubMed ID: 8719804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonadrenergic, noncholinergic relaxation of human isolated corpus cavernosum induced by scorpion venom.
    Teixeira CE; Faro R; Moreno RA; Rodrigues Netto N; Fregonesi A; Antunes E; De Nucci G
    Urology; 2001 Apr; 57(4):816-20. PubMed ID: 11306421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.