BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

395 related articles for article (PubMed ID: 11413003)

  • 1. Ablation of the metal ion-induced endocytosis of the prion protein by disease-associated mutation of the octarepeat region.
    Perera WS; Hooper NM
    Curr Biol; 2001 Apr; 11(7):519-23. PubMed ID: 11413003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early onset prion disease from octarepeat expansion correlates with copper binding properties.
    Stevens DJ; Walter ED; Rodríguez A; Draper D; Davies P; Brown DR; Millhauser GL
    PLoS Pathog; 2009 Apr; 5(4):e1000390. PubMed ID: 19381258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of rafts in the fibrillization and aggregation of prions.
    Pinheiro TJ
    Chem Phys Lipids; 2006 Jun; 141(1-2):66-71. PubMed ID: 16647049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The prion protein and lipid rafts.
    Taylor DR; Hooper NM
    Mol Membr Biol; 2006; 23(1):89-99. PubMed ID: 16611584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The state of the prion.
    Weissmann C
    Nat Rev Microbiol; 2004 Nov; 2(11):861-71. PubMed ID: 15494743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolving views in prion glycosylation: functional and pathological implications.
    Ermonval M; Mouillet-Richard S; Codogno P; Kellermann O; Botti J
    Biochimie; 2003; 85(1-2):33-45. PubMed ID: 12765773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper binding to the octarepeats of the prion protein. Affinity, specificity, folding, and cooperativity: insights from circular dichroism.
    Garnett AP; Viles JH
    J Biol Chem; 2003 Feb; 278(9):6795-802. PubMed ID: 12454014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurometals in the Pathogenesis of Prion Diseases.
    Kawahara M; Kato-Negishi M; Tanaka KI
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33525334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic mapping of activity determinants within cellular prion proteins: N-terminal modules in PrPC offset pro-apoptotic activity of the Doppel helix B/B' region.
    Drisaldi B; Coomaraswamy J; Mastrangelo P; Strome B; Yang J; Watts JC; Chishti MA; Marvi M; Windl O; Ahrens R; Major F; Sy MS; Kretzschmar H; Fraser PE; Mount HT; Westaway D
    J Biol Chem; 2004 Dec; 279(53):55443-54. PubMed ID: 15459186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strain-specific prion-protein conformation determined by metal ions.
    Wadsworth JD; Hill AF; Joiner S; Jackson GS; Clarke AR; Collinge J
    Nat Cell Biol; 1999 May; 1(1):55-9. PubMed ID: 10559865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of lipid rafts in prion protein biology.
    Lewis V; Hooper NM
    Front Biosci (Landmark Ed); 2011 Jan; 16(1):151-68. PubMed ID: 21196164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The H187R mutation of the human prion protein induces conversion of recombinant prion protein to the PrP(Sc)-like form.
    Hosszu LL; Tattum MH; Jones S; Trevitt CR; Wells MA; Waltho JP; Collinge J; Jackson GS; Clarke AR
    Biochemistry; 2010 Oct; 49(40):8729-38. PubMed ID: 20718410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A transmembrane form of the prion protein in neurodegenerative disease.
    Hegde RS; Mastrianni JA; Scott MR; DeFea KA; Tremblay P; Torchia M; DeArmond SJ; Prusiner SB; Lingappa VR
    Science; 1998 Feb; 279(5352):827-34. PubMed ID: 9452375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Misfolding of the prion protein at the plasma membrane induces endocytosis, intracellular retention and degradation.
    Kiachopoulos S; Heske J; Tatzelt J; Winklhofer KF
    Traffic; 2004 Jun; 5(6):426-36. PubMed ID: 15117317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Truncated PrP(c) in mammalian brain: interspecies variation and location in membrane rafts.
    Laffont-Proust I; Hässig R; Haïk S; Simon S; Grassi J; Fonta C; Faucheux BA; Moya KL
    Biol Chem; 2006 Mar; 387(3):297-300. PubMed ID: 16542151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mouse prion protein (PrP) segment 100 to 104 regulates conversion of PrP(C) to PrP(Sc) in prion-infected neuroblastoma cells.
    Hara H; Okemoto-Nakamura Y; Shinkai-Ouchi F; Hanada K; Yamakawa Y; Hagiwara K
    J Virol; 2012 May; 86(10):5626-36. PubMed ID: 22398286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of the pathological Q212P mutation on human prion protein non-octarepeat copper-binding site.
    D'Angelo P; Della Longa S; Arcovito A; Mancini G; Zitolo A; Chillemi G; Giachin G; Legname G; Benetti F
    Biochemistry; 2012 Aug; 51(31):6068-79. PubMed ID: 22788868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Species barrier in prion diseases: a kinetic interpretation based on the conformational adaptation of the prion protein.
    Kellershohn N; Laurent M
    Biochem J; 1998 Sep; 334 ( Pt 3)(Pt 3):539-45. PubMed ID: 9729459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Mechanisms of prion transmission].
    Sakaguchi S
    Nihon Rinsho; 2007 Aug; 65(8):1391-5. PubMed ID: 17695274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The protease-sensitive N-terminal polybasic region of prion protein modulates its conversion to the pathogenic prion conformer.
    Zhang X; Pan YH; Chen Y; Pan C; Ma J; Yuan C; Yu G; Ma J
    J Biol Chem; 2021 Nov; 297(5):101344. PubMed ID: 34710372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.