BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 11413061)

  • 1. Adaptive independent component analysis of multichannel electrogastrograms.
    Liang H
    Med Eng Phys; 2001 Mar; 23(2):91-7. PubMed ID: 11413061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extraction of gastric slow waves from electrogastrograms: combining independent component analysis and adaptive signal enhancement.
    Liang H
    Med Biol Eng Comput; 2005 Mar; 43(2):245-51. PubMed ID: 15865135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blind separation of multichannel electrogastrograms using independent component analysis based on a neural network.
    Wang ZS; Cheung JY; Chen JD
    Med Biol Eng Comput; 1999 Jan; 37(1):80-6. PubMed ID: 10396846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Empirical Mode Decomposition for slow wave extraction from electrogastrographical signals.
    Mika B; Komorowski D; Tkacz E
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():4138-41. PubMed ID: 26737205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of slow wave propagation in multichannel electrogastrography by using noise-assisted multivariate empirical mode decomposition and cross-covariance analysis.
    Mika B; Komorowski D; Tkacz E
    Comput Biol Med; 2018 Sep; 100():305-315. PubMed ID: 29397919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multichannel adaptive enhancement of the electrogastrogram.
    Chen JD; Vandewalle J; Sansen W; Vantrappen G; Janssens J
    IEEE Trans Biomed Eng; 1990 Mar; 37(3):285-94. PubMed ID: 2329002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous wavelet analysis as an aid in the representation and interpretation of electrogastrographic signals.
    Qiao W; Sun HH; Chey WY; Lee KY
    Ann Biomed Eng; 1998; 26(6):1072-81. PubMed ID: 9846945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signal reconstruction of the slow wave and spike potential from electrogastrogram.
    Qin S; Ding W; Miao L; Xi N; Li H; Yang C
    Biomed Mater Eng; 2015; 26 Suppl 1():S1515-21. PubMed ID: 26405915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. What can be measured from surface electrogastrography. Computer simulations.
    Liang J; Chen JD
    Dig Dis Sci; 1997 Jul; 42(7):1331-43. PubMed ID: 9246026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Combined Methodology to Eliminate Artifacts in Multichannel Electrogastrogram Based on Independent Component Analysis and Ensemble Empirical Mode Decomposition.
    Sengottuvel S; Khan PF; Mariyappa N; Patel R; Saipriya S; Gireesan K
    SLAS Technol; 2018 Jun; 23(3):269-280. PubMed ID: 29547700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear adaptive noise compensation in electrogastrograms recorded from healthy dogs.
    Mintchev MP; Girard A; Bowes KL
    IEEE Trans Biomed Eng; 2000 Feb; 47(2):239-48. PubMed ID: 10721631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust time delay estimation of bioelectric signals using least absolute deviation neural network.
    Wang Z; He Z; Chen JD
    IEEE Trans Biomed Eng; 2005 Mar; 52(3):454-62. PubMed ID: 15759575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomagnetic and bioelectric detection of gastric slow wave activity in normal human subjects--a correlation study.
    Somarajan S; Muszynski ND; Obioha C; Richards WO; Bradshaw LA
    Physiol Meas; 2012 Jul; 33(7):1171-9. PubMed ID: 22735166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer simulation of the effect of changing abdominal thickness on the electrogastrogram.
    Mintchev MP; Bowes KL
    Med Eng Phys; 1998 Apr; 20(3):177-81. PubMed ID: 9690487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of Empirical Mode Decomposition Combined With Notch Filtering for Interpretation of Surface Electromyograms During Functional Electrical Stimulation.
    Pilkar R; Yarossi M; Ramanujam A; Rajagopalan V; Bayram MB; Mitchell M; Canton S; Forrest G
    IEEE Trans Neural Syst Rehabil Eng; 2017 Aug; 25(8):1268-1277. PubMed ID: 27834646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved signal processing techniques for the analysis of high resolution serosal slow wave activity in the stomach.
    Paskaranandavadivel N; Cheng LK; Du P; O'Grady G; Pullan AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1737-40. PubMed ID: 22254662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-invasive identification of gastric contractions from surface electrogastrogram using back-propagation neural networks.
    Chen JD; Lin Z; Wu Q; McCallum RW
    Med Eng Phys; 1995 Apr; 17(3):219-25. PubMed ID: 7795860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Do increased electrogastrographic frequencies always correspond to internal tachygastria?
    Mintchev MP; Bowes KL
    Ann Biomed Eng; 1997; 25(6):1052-8. PubMed ID: 9395050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of multichannel electrogastrograms obtained with the use of three different electrode types.
    Kasicka-Jonderko A; Jonderko K; Krusiec-Swidergol B; Obrok I; Blonska-Fajfrowska B
    J Smooth Muscle Res; 2006 Jun; 42(2-3):89-101. PubMed ID: 17001115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics analysis of electrogastrography using Double-Wayland algorithm.
    Matsuura Y; Yokoyama K; Takada H; Shimada K
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1973-6. PubMed ID: 18002371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.