These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 11413144)

  • 1. Induction of secondary structure in a COOH-terminal peptide of histone H1 by interaction with the DNA: an infrared spectroscopy study.
    Vila R; Ponte I; Collado M; Arrondo JL; Suau P
    J Biol Chem; 2001 Aug; 276(33):30898-903. PubMed ID: 11413144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A helix-turn motif in the C-terminal domain of histone H1.
    Vila R; Ponte I; Jiménez MA; Rico M; Suau P
    Protein Sci; 2000 Apr; 9(4):627-36. PubMed ID: 10794405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA-induced alpha-helical structure in the NH2-terminal domain of histone H1.
    Vila R; Ponte I; Collado M; Arrondo JL; Jiménez MA; Rico M; Suau P
    J Biol Chem; 2001 Dec; 276(49):46429-35. PubMed ID: 11584004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA-induced secondary structure of the carboxyl-terminal domain of histone H1.
    Roque A; Iloro I; Ponte I; Arrondo JL; Suau P
    J Biol Chem; 2005 Sep; 280(37):32141-7. PubMed ID: 16006555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An inducible helix-Gly-Gly-helix motif in the N-terminal domain of histone H1e: a CD and NMR study.
    Vila R; Ponte I; Jiménez MA; Rico M; Suau P
    Protein Sci; 2002 Feb; 11(2):214-20. PubMed ID: 11790831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Secondary structure and temperature behavior of the acetylcholine receptor by Fourier transform infrared spectroscopy.
    Naumann D; Schultz C; Görne-Tschelnokow U; Hucho F
    Biochemistry; 1993 Mar; 32(12):3162-8. PubMed ID: 8457576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of increased length and intact capping sequences to the conformational preference for helix in a 31-residue peptide from the C terminus of myohemerythrin.
    Reymond MT; Huo S; Duggan B; Wright PE; Dyson HJ
    Biochemistry; 1997 Apr; 36(17):5234-44. PubMed ID: 9136885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Condensation of DNA and chromatin by an SPKK-containing octapeptide repeat motif present in the C-terminus of histone H1.
    Khadake JR; Rao MR
    Biochemistry; 1997 Feb; 36(5):1041-51. PubMed ID: 9033394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a 34 amino acid stretch within the C-terminus of histone H1 as the DNA-condensing domain by site-directed mutagenesis.
    Bharath MM; Ramesh S; Chandra NR; Rao MR
    Biochemistry; 2002 Jun; 41(24):7617-27. PubMed ID: 12056893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and FTIR conformational studies of peptides from the basic region of c-Jun: a critical analysis on the basis of CD and NMR data.
    Dahmani B; Krebs D; el Antri S; Troalen F; Fermandjian S
    J Biomol Struct Dyn; 1997 Feb; 14(4):429-39. PubMed ID: 9172643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fourier transform infrared spectroscopy for the characterization of a model peptide-DNA interaction.
    Dev SB; Walters L
    Biopolymers; 1990 Jan; 29(1):289-99. PubMed ID: 2328291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser Raman spectra of calf thymus histones H1, H2A, and H2B.
    Guillot JG; Pézolet M; Pallotta D
    Biochim Biophys Acta; 1977 Apr; 491(2):423-33. PubMed ID: 870063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FTIR spectroscopy of alanine-based peptides: assignment of the amide I' modes for random coil and helix.
    Martinez G; Millhauser G
    J Struct Biol; 1995; 114(1):23-7. PubMed ID: 7772415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformations of peptide fragments from the FK506 binding protein: comparison with the native and urea-unfolded states.
    Callihan DE; Logan TM
    J Mol Biol; 1999 Feb; 285(5):2161-75. PubMed ID: 9925792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Secondary structure and temperature-induced unfolding and refolding of ribonuclease T1 in aqueous solution. A Fourier transform infrared spectroscopic study.
    Fabian H; Schultz C; Naumann D; Landt O; Hahn U; Saenger W
    J Mol Biol; 1993 Aug; 232(3):967-81. PubMed ID: 8355280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intermolecular beta-sheet results from trifluoroethanol-induced nonnative alpha-helical structure in beta-sheet predominant proteins: infrared and circular dichroism spectroscopic study.
    Dong A; Matsuura J; Manning MC; Carpenter JF
    Arch Biochem Biophys; 1998 Jul; 355(2):275-81. PubMed ID: 9675038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational mapping of the N-terminal peptide of HIV-1 gp41 in membrane environments using (13)C-enhanced Fourier transform infrared spectroscopy.
    Gordon LM; Mobley PW; Pilpa R; Sherman MA; Waring AJ
    Biochim Biophys Acta; 2002 Feb; 1559(2):96-120. PubMed ID: 11853678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amide I'-II' 2D IR spectroscopy provides enhanced protein secondary structural sensitivity.
    Deflores LP; Ganim Z; Nicodemus RA; Tokmakoff A
    J Am Chem Soc; 2009 Mar; 131(9):3385-91. PubMed ID: 19256572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Helix propagation in trifluoroethanol solutions.
    Storrs RW; Truckses D; Wemmer DE
    Biopolymers; 1992 Dec; 32(12):1695-702. PubMed ID: 1472652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies of peptides forming 3(10)- and alpha-helices and beta-bend ribbon structures in organic solution and in model biomembranes by Fourier transform infrared spectroscopy.
    Kennedy DF; Crisma M; Toniolo C; Chapman D
    Biochemistry; 1991 Jul; 30(26):6541-8. PubMed ID: 2054352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.