These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 11413201)

  • 1. Improving quantitative flowering models through a better understanding of the phases of photoperiod sensitivity.
    Adams SR; Pearson S; Hadley P
    J Exp Bot; 2001 Apr; 52(357):655-62. PubMed ID: 11413201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using flowering times and leaf numbers to model the phases of photoperiod sensitivity in Antirrhinum majus L.
    Adams SR; Munir M; Valdés VM; Langton FA; Jackson SD
    Ann Bot; 2003 Nov; 92(5):689-96. PubMed ID: 14500328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variation in the durations of the photoperiod-sensitive and photoperiod-insensitive phases of development to flowering among eight maturity isolines of soyabean [Glycine max (L.) Merrill].
    Upadhyay AP; Summerfield RH; Ellis RH; Roberts EH; Qi A
    Ann Bot; 1994 Jul; 74(1):97-101. PubMed ID: 19700467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of Photoperiod-Sensitive Phase in Chickpea (Cicer arietinum L.).
    Daba K; Warkentin TD; Bueckert R; Todd CD; Tar'an B
    Front Plant Sci; 2016; 7():478. PubMed ID: 27148306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model analysis of flowering phenology in recombinant inbred lines of barley.
    Yin X; Struik PC; Tang J; Qi C; Liu T
    J Exp Bot; 2005 Mar; 56(413):959-65. PubMed ID: 15689339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induction of flowering in tropical trees by a 30-min reduction in photoperiod: evidence from field observations and herbarium specimens.
    Rivera G; Borchert R
    Tree Physiol; 2001 Mar; 21(4):201-12. PubMed ID: 11276414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Association mapping of loci controlling genetic and environmental interaction of soybean flowering time under various photo-thermal conditions.
    Mao T; Li J; Wen Z; Wu T; Wu C; Sun S; Jiang B; Hou W; Li W; Song Q; Wang D; Han T
    BMC Genomics; 2017 May; 18(1):415. PubMed ID: 28549456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular mechanisms of flowering under long days and stem growth habit in soybean.
    Cao D; Takeshima R; Zhao C; Liu B; Jun A; Kong F
    J Exp Bot; 2017 Apr; 68(8):1873-1884. PubMed ID: 28338712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NO FLOWERING IN SHORT DAY (NFL) is a bHLH transcription factor that promotes flowering specifically under short-day conditions in Arabidopsis.
    Sharma N; Xin R; Kim DH; Sung S; Lange T; Huq E
    Development; 2016 Feb; 143(4):682-90. PubMed ID: 26758694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and seed number in indeterminate soybean as affected by timing and duration of exposure to long photoperiods after flowering.
    Kantolic AG; Slafer GA
    Ann Bot; 2007 May; 99(5):925-33. PubMed ID: 17452381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competence to Flower: Age-Controlled Sensitivity to Environmental Cues.
    Hyun Y; Richter R; Coupland G
    Plant Physiol; 2017 Jan; 173(1):36-46. PubMed ID: 27920161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ expression of the GmNMH7 gene is photoperiod-dependent in a unique soybean (Glycine max [L.] Merr.) flowering reversion system.
    Wu C; Ma Q; Yam KM; Cheung MY; Xu Y; Han T; Lam HM; Chong K
    Planta; 2006 Mar; 223(4):725-35. PubMed ID: 16208488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Winter Memory throughout the Plant Kingdom: Different Paths to Flowering.
    Bouché F; Woods DP; Amasino RM
    Plant Physiol; 2017 Jan; 173(1):27-35. PubMed ID: 27756819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Daylength measurements by rice plants in photoperiodic short-day flowering.
    Izawa T
    Int Rev Cytol; 2007; 256():191-222. PubMed ID: 17241908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase change and flowering in woody plants of the New Zealand flora.
    Jameson PE; Clemens J
    J Exp Bot; 2019 Nov; 70(21):e6488-e6495. PubMed ID: 26512056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solar rhythm in the regulation of photoperiodic flowering of long-day and short-day plants.
    Yeang HY
    J Exp Bot; 2013 Jul; 64(10):2643-52. PubMed ID: 23645867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changing Responses to Changing Seasons: Natural Variation in the Plasticity of Flowering Time.
    Blackman BK
    Plant Physiol; 2017 Jan; 173(1):16-26. PubMed ID: 27872243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of photoperiod-regulated tuberization in potato by the Arabidopsis flowering-time gene CONSTANS.
    Martínez-García JF; Virgós-Soler A; Prat S
    Proc Natl Acad Sci U S A; 2002 Nov; 99(23):15211-6. PubMed ID: 12393812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revisiting phase transition during flowering in Arabidopsis.
    Suh SS; Choi KR; Lee I
    Plant Cell Physiol; 2003 Aug; 44(8):836-43. PubMed ID: 12941876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying the Effects of Photoperiod, Temperature and Daily Irradiance on Flowering Time of Soybean Isolines.
    Cober ER; Curtis DF; Stewart DW; Morrison MJ
    Plants (Basel); 2014 Nov; 3(4):476-97. PubMed ID: 27135515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.