BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 11413205)

  • 1. Zea mays CCaMK: autophosphorylation-dependent substrate phosphorylation and down-regulation by red light.
    Pandey S; Sopory SK
    J Exp Bot; 2001 Apr; 52(357):691-700. PubMed ID: 11413205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical evidence for a calmodulin-stimulated calcium-dependent protein kinase in maize.
    Pandey S; Sopory SK
    Eur J Biochem; 1998 Aug; 255(3):718-26. PubMed ID: 9738913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thr420 and Ser454 of ZmCCaMK play a crucial role in brassinosteroid-induced antioxidant defense in maize.
    Liu L; Han T; Liu W; Han G; Di P; Yu X; Yan J; Zhang A
    Biochem Biophys Res Commun; 2020 May; 525(3):537-542. PubMed ID: 32113680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autophosphorylation of calcium/calmodulin-dependent protein kinase (CCaMK) at S343 or S344 generates an intramolecular interaction blocking the CaM-binding.
    Jauregui E; Du L; Gleason C; Poovaiah BW
    Plant Signal Behav; 2017 Jul; 12(7):e1343779. PubMed ID: 28696815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorylation of S344 in the calmodulin-binding domain negatively affects CCaMK function during bacterial and fungal symbioses.
    Routray P; Miller JB; Du L; Oldroyd G; Poovaiah BW
    Plant J; 2013 Oct; 76(2):287-96. PubMed ID: 23869591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peptide phosphorylation by calcium-dependent protein kinase from maize seedlings.
    Loog M; Toomik R; Sak K; Muszynska G; Järv J; Ek P
    Eur J Biochem; 2000 Jan; 267(2):337-43. PubMed ID: 10632703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pr-specific phytochrome phosphorylation in vitro by a protein kinase present in anti-phytochrome maize immunoprecipitates.
    Biermann BJ; Pao LI; Feldman LJ
    Plant Physiol; 1994 May; 105(1):243-51. PubMed ID: 11536638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autophosphorylation-dependent inactivation of plant chimeric calcium/calmodulin-dependent protein kinase.
    Sathyanarayanan PV; Poovaiah BW
    Eur J Biochem; 2002 May; 269(10):2457-63. PubMed ID: 12027883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium and ZmCCaMK are involved in brassinosteroid-induced antioxidant defense in maize leaves.
    Yan J; Guan L; Sun Y; Zhu Y; Liu L; Lu R; Jiang M; Tan M; Zhang A
    Plant Cell Physiol; 2015 May; 56(5):883-96. PubMed ID: 25647327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a winged bean (Psophocarpus tetragonolobus) protein kinase with calmodulin-like domain: regulation by autophosphorylation.
    Saha P; Singh M
    Biochem J; 1995 Jan; 305 ( Pt 1)(Pt 1):205-10. PubMed ID: 7826330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel Ca2+/calmodulin-dependent protein kinase lacking autophosphorylation activity in the rabbit heart.
    Uemura A; Okazaki K; Takesue H; Matsubara T; Hidaka H
    Biochem Biophys Res Commun; 1995 Jun; 211(2):562-9. PubMed ID: 7794270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of calcium- and calmodulin-dependent protein kinase (CCaMK), the central regulator of plant root endosymbiosis.
    Singh S; Parniske M
    Curr Opin Plant Biol; 2012 Aug; 15(4):444-53. PubMed ID: 22727503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mechanism for synaptic frequency detection through autophosphorylation of CaM kinase II.
    Dosemeci A; Albers RW
    Biophys J; 1996 Jun; 70(6):2493-501. PubMed ID: 8744289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decreased calcium/calmodulin-dependent protein kinase II and protein kinase C activities mediate impairment of hippocampal long-term potentiation in the olfactory bulbectomized mice.
    Moriguchi S; Han F; Nakagawasai O; Tadano T; Fukunaga K
    J Neurochem; 2006 Apr; 97(1):22-9. PubMed ID: 16515554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GsCBRLK, a calcium/calmodulin-binding receptor-like kinase, is a positive regulator of plant tolerance to salt and ABA stress.
    Yang L; Ji W; Zhu Y; Gao P; Li Y; Cai H; Bai X; Guo D
    J Exp Bot; 2010 May; 61(9):2519-33. PubMed ID: 20400529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Properties of a blue-light-absorbing photoreceptor kinase localized in the plasma membrane of the coleoptile tip region.
    Hager A
    Planta; 1996 Feb; 198(2):294-9. PubMed ID: 11540726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular mechanisms of protein kinase regulation by calcium/calmodulin.
    Simon B; Huart AS; Wilmanns M
    Bioorg Med Chem; 2015 Jun; 23(12):2749-60. PubMed ID: 25963826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional domains of plant chimeric calcium/calmodulin-dependent protein kinase: regulation by autoinhibitory and visinin-like domains.
    Ramachandiran S; Takezawa D; Wang W; Poovaiah BW
    J Biochem; 1997 May; 121(5):984-90. PubMed ID: 9192744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abscisic acid activates a Ca2+-calmodulin-stimulated protein kinase involved in antioxidant defense in maize leaves.
    Xu S
    Acta Biochim Biophys Sin (Shanghai); 2010 Sep; 42(9):646-55. PubMed ID: 20702465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulatory cascades involving calmodulin-dependent protein kinases.
    Means AR
    Mol Endocrinol; 2000 Jan; 14(1):4-13. PubMed ID: 10628743
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.