These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 11413207)

  • 21. Bundle sheath lignification mediates the linkage of leaf hydraulics and venation.
    Ohtsuka A; Sack L; Taneda H
    Plant Cell Environ; 2018 Feb; 41(2):342-353. PubMed ID: 29044569
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sequential depolarization of root cortical and stelar cells induced by an acute salt shock - implications for Na(+) and K(+) transport into xylem vessels.
    Wegner LH; Stefano G; Shabala L; Rossi M; Mancuso S; Shabala S
    Plant Cell Environ; 2011 May; 34(5):859-69. PubMed ID: 21332511
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional anatomy controls ion distribution in banana leaves: significance of Na+ seclusion at the leaf margins.
    Shapira O; Khadka S; Israeli Y; Shani U; Schwartz A
    Plant Cell Environ; 2009 May; 32(5):476-85. PubMed ID: 19183293
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cyst(e)ine is the transport metabolite of assimilated sulfur from bundle-sheath to mesophyll cells in maize leaves.
    Burgener M; Suter M; Jones S; Brunold C
    Plant Physiol; 1998 Apr; 116(4):1315-22. PubMed ID: 9536048
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Scarecrow plays a role in establishing Kranz anatomy in maize leaves.
    Slewinski TL; Anderson AA; Zhang C; Turgeon R
    Plant Cell Physiol; 2012 Dec; 53(12):2030-7. PubMed ID: 23128603
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation by external K+ in a maize inward shaker channel targets transport activity in the high concentration range.
    Su YH; North H; Grignon C; Thibaud JB; Sentenac H; Véry AA
    Plant Cell; 2005 May; 17(5):1532-48. PubMed ID: 15805483
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Methods for mesophyll and bundle sheath cell separation.
    Sheen J
    Methods Cell Biol; 1995; 49():305-14. PubMed ID: 8531764
    [No Abstract]   [Full Text] [Related]  

  • 28. High spatial resolution mass spectrometry imaging reveals the genetically programmed, developmental modification of the distribution of thylakoid membrane lipids among individual cells of maize leaf.
    Dueñas ME; Klein AT; Alexander LE; Yandeau-Nelson MD; Nikolau BJ; Lee YJ
    Plant J; 2017 Feb; 89(4):825-838. PubMed ID: 27859865
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential turnover of the photosystem II reaction centre D1 protein in mesophyll and bundle sheath chloroplasts of maize.
    Pokorska B; Zienkiewicz M; Powikrowska M; Drozak A; Romanowska E
    Biochim Biophys Acta; 2009 Oct; 1787(10):1161-9. PubMed ID: 19450540
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bundle-sheath cell regulation of xylem-mesophyll water transport via aquaporins under drought stress: a target of xylem-borne ABA?
    Shatil-Cohen A; Attia Z; Moshelion M
    Plant J; 2011 Jul; 67(1):72-80. PubMed ID: 21401747
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Red/far-red and blue light-responsive regions of maize rbcS-m3 are active in bundle sheath and mesophyll cells, respectively.
    Purcell M; Mabrouk YM; Bogorad L
    Proc Natl Acad Sci U S A; 1995 Dec; 92(25):11504-8. PubMed ID: 8524792
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evidence for a Role for NAD(P)H Dehydrogenase in Concentration of CO2 in the Bundle Sheath Cell of Zea mays.
    Peterson RB; Schultes NP; McHale NA; Zelitch I
    Plant Physiol; 2016 May; 171(1):125-38. PubMed ID: 27002061
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrical signalling and cytokinins mediate effects of light and root cutting on ion uptake in intact plants.
    Shabala S; Pang J; Zhou M; Shabala L; Cuin TA; Nick P; Wegner LH
    Plant Cell Environ; 2009 Feb; 32(2):194-207. PubMed ID: 19021884
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spectral and dose dependence of light-induced ion flux responses from maize leaves and their involvement in leaf expansion growth.
    Zivanović BD; Cuin TA; Shabala S
    Plant Cell Physiol; 2007 Apr; 48(4):598-605. PubMed ID: 17329321
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Abscisic acid-induced apoplastic H2O2 accumulation up-regulates the activities of chloroplastic and cytosolic antioxidant enzymes in maize leaves.
    Hu X; Jiang M; Zhang A; Lu J
    Planta; 2005 Dec; 223(1):57-68. PubMed ID: 16049674
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Subcellular-level resolution MALDI-MS imaging of maize leaf metabolites by MALDI-linear ion trap-Orbitrap mass spectrometer.
    Korte AR; Yandeau-Nelson MD; Nikolau BJ; Lee YJ
    Anal Bioanal Chem; 2015 Mar; 407(8):2301-9. PubMed ID: 25618761
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Short-term effects of potassium fertilization on the hydraulic conductance of Laurus nobilis L.
    Oddo E; Inzerillo S; La Bella F; Grisafi F; Salleo S; Nardini A
    Tree Physiol; 2011 Feb; 31(2):131-8. PubMed ID: 21367746
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cell differentiation in the longitudinal veins and formation of commissural veins in rice (Oryza sativa) and maize (Zea mays).
    Sakaguchi J; Fukuda H
    J Plant Res; 2008 Nov; 121(6):593-602. PubMed ID: 18932023
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cellular Localization of CO(2) Fixation and Translocation of Metabolites.
    Moss DN; Rasmussen HP
    Plant Physiol; 1969 Jul; 44(7):1063-8. PubMed ID: 16657158
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Imaging nutrient distributions in plant tissue using time-of-flight secondary ion mass spectrometry and scanning electron microscopy.
    Metzner R; Schneider HU; Breuer U; Schroeder WH
    Plant Physiol; 2008 Aug; 147(4):1774-87. PubMed ID: 18567833
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.