These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 11414033)

  • 1. A molecular topology approach to predicting pesticide pollution of groundwater.
    Worrall F
    Environ Sci Technol; 2001 Jun; 35(11):2282-7. PubMed ID: 11414033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum vs. topological descriptors in the development of molecular models of groundwater pollution by pesticides.
    Worrall F; Thomsen M
    Chemosphere; 2004 Jan; 54(4):585-96. PubMed ID: 14581061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linking a one-dimensional pesticide fate model to a three-dimensional groundwater model to simulate pollution risks of shallow and deep groundwater underlying fractured till.
    Stenemo F; Jørgensen PR; Jarvis N
    J Contam Hydrol; 2005 Sep; 79(1-2):89-106. PubMed ID: 16061305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soil fumigation alters adsorption and degradation behavior of pesticides in soil.
    Huang B; Yan D; Wang X; Wang X; Fang W; Zhang D; Ouyang C; Wang Q; Cao A
    Environ Pollut; 2019 Mar; 246():264-273. PubMed ID: 30557800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A pesticide surface water mobility index and its relationship with concentrations in agricultural drainage watersheds.
    Chen W; Hertl P; Chen S; Tierney D
    Environ Toxicol Chem; 2002 Feb; 21(2):298-308. PubMed ID: 11833798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a screening tool to assess the temporal risk of pesticides leaching to groundwater using the source, target, vector approach. An Irish case study for shallow groundwater.
    Labite HE; Cummins E
    Environ Monit Assess; 2015 Mar; 187(3):91. PubMed ID: 25663403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Levels and distributions of organochlorine pesticides in the soil-groundwater system of vegetable planting area in Tianjin City, Northern China.
    Pan HW; Lei HJ; He XS; Xi BD; Han YP; Xu QG
    Environ Geochem Health; 2017 Apr; 39(2):417-429. PubMed ID: 27975327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An integrated approach for assessing influence of agricultural activities on pesticides in a shallow aquifer in south-eastern Norway.
    Kværner J; Eklo OM; Solbakken E; Solberg I; Sorknes S
    Sci Total Environ; 2014 Nov; 499():520-32. PubMed ID: 24996854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TurfPQ, a pesticide runoff model for turf.
    Haith DA
    J Environ Qual; 2001; 30(3):1033-9. PubMed ID: 11401250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soil characteristics and agrichemicals in groundwater of the midwestern United States.
    Burkart M; Kolpin DW; Jaquis R; Cole K
    Water Sci Technol; 2001; 43(5):251-60. PubMed ID: 11379139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated modeling of agricultural scenarios (IMAS) to support pesticide action plans: the case of the Coulonge drinking water catchment area (SW France).
    Vernier F; Leccia-Phelpin O; Lescot JM; Minette S; Miralles A; Barberis D; Scordia C; Kuentz-Simonet V; Tonneau JP
    Environ Sci Pollut Res Int; 2017 Mar; 24(8):6923-6950. PubMed ID: 27726081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pesticide distribution in an agricultural environment in Argentina.
    Loewy RM; Monza LB; Kirs VE; Savini MC
    J Environ Sci Health B; 2011; 46(8):662-70. PubMed ID: 21806463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation and sorption of atrazine, hexazinone and procymidone in coastal sand aquifer media.
    Pang L; Close M; Flintoft M
    Pest Manag Sci; 2005 Feb; 61(2):133-43. PubMed ID: 15619714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A pesticide runoff model for simulating runoff losses of pesticides from agricultural lands.
    Li YR; Huang GH; Li YF; Struger J; Fischer JD
    Water Sci Technol; 2003; 47(1):33-40. PubMed ID: 12578171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pesticide exposure assessment in rice paddies in Europe: a comparative study of existing mathematical models.
    Karpouzas DG; Cervelli S; Watanabe H; Capri E; Ferrero A
    Pest Manag Sci; 2006 Jul; 62(7):624-36. PubMed ID: 16718738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variability assessment of groundwater exposure to pesticides and its consideration in life-cycle assessment.
    Geisler G; Hellweg S; Liechti S; Hungerbühler K
    Environ Sci Technol; 2004 Aug; 38(16):4457-64. PubMed ID: 15382878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of geographic information systems for assessing groundwater pollution potential by pesticides in Central Thailand.
    Thapinta A; Hudak PF
    Environ Int; 2003 Apr; 29(1):87-93. PubMed ID: 12605941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of pesticide root zone model 3.12: leaching predictions with field data.
    Russell MH; Jones RL
    Environ Toxicol Chem; 2002 Aug; 21(8):1552-7. PubMed ID: 12152753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of priority pesticides, degradation products, and pesticide adjuvants in groundwaters and top soils from agricultural areas of the Ebro river basin.
    Hildebrandt A; Lacorte S; Barceló D
    Anal Bioanal Chem; 2007 Feb; 387(4):1459-68. PubMed ID: 17211597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use pattern of pesticides and their predicted mobility into shallow groundwater and surface water bodies of paddy lands in Mahaweli river basin in Sri Lanka.
    Aravinna P; Priyantha N; Pitawala A; Yatigammana SK
    J Environ Sci Health B; 2017 Jan; 52(1):37-47. PubMed ID: 27754814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.