BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

524 related articles for article (PubMed ID: 11414283)

  • 1. Small proteins that modulate calmodulin-dependent signal transduction: effects of PEP-19, neuromodulin, and neurogranin on enzyme activation and cellular homeostasis.
    Slemmon JR; Feng B; Erhardt JA
    Mol Neurobiol; 2000; 22(1-3):99-113. PubMed ID: 11414283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Camstatins are peptide antagonists of calmodulin based upon a conserved structural motif in PEP-19, neurogranin, and neuromodulin.
    Slemmon JR; Morgan JI; Fullerton SM; Danho W; Hilbush BS; Wengenack TM
    J Biol Chem; 1996 Jul; 271(27):15911-7. PubMed ID: 8663125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RC3/neurogranin, a postsynaptic calpacitin for setting the response threshold to calcium influxes.
    Gerendasy DD; Sutcliffe JG
    Mol Neurobiol; 1997 Oct; 15(2):131-63. PubMed ID: 9396008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a neuronal calmodulin-binding peptide, CAP-19, containing an IQ motif.
    Smith ML; Johanson RA; Rogers KE; Coleman PD; Slemmon JR
    Brain Res Mol Brain Res; 1998 Nov; 62(1):12-24. PubMed ID: 9795107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dendritic peptide neurogranin can regulate a calmodulin-dependent target.
    Martzen MR; Slemmon JR
    J Neurochem; 1995 Jan; 64(1):92-100. PubMed ID: 7528268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calmodulin-binding peptide PEP-19 modulates activation of calmodulin kinase II In situ.
    Johanson RA; Sarau HM; Foley JJ; Slemmon JR
    J Neurosci; 2000 Apr; 20(8):2860-6. PubMed ID: 10751438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calmodulin stabilizes an amphiphilic alpha-helix within RC3/neurogranin and GAP-43/neuromodulin only when Ca2+ is absent.
    Gerendasy DD; Herron SR; Jennings PA; Sutcliffe JG
    J Biol Chem; 1995 Mar; 270(12):6741-50. PubMed ID: 7896819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new role for IQ motif proteins in regulating calmodulin function.
    Putkey JA; Kleerekoper Q; Gaertner TR; Waxham MN
    J Biol Chem; 2003 Dec; 278(50):49667-70. PubMed ID: 14551202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification and characterization of a brain-specific protein kinase C substrate, neurogranin (p17). Identification of a consensus amino acid sequence between neurogranin and neuromodulin (GAP43) that corresponds to the protein kinase C phosphorylation site and the calmodulin-binding domain.
    Baudier J; Deloulme JC; Van Dorsselaer A; Black D; Matthes HW
    J Biol Chem; 1991 Jan; 266(1):229-37. PubMed ID: 1824695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Participation of NMDA-mediated phosphorylation and oxidation of neurogranin in the regulation of Ca2+- and Ca2+/calmodulin-dependent neuronal signaling in the hippocampus.
    Wu J; Huang KP; Huang FL
    J Neurochem; 2003 Sep; 86(6):1524-33. PubMed ID: 12950461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of transcriptional regulation of neurogranin by nitric oxide and the role of neurogranin in SNP-induced cell death: implication of neurogranin in an increased neuronal susceptibility to oxidative stress.
    Gui J; Song Y; Han NL; Sheu FS
    Int J Biol Sci; 2007 Feb; 3(4):212-24. PubMed ID: 17389928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RC3/Neurogranin and Ca2+/calmodulin-dependent protein kinase II produce opposing effects on the affinity of calmodulin for calcium.
    Gaertner TR; Putkey JA; Waxham MN
    J Biol Chem; 2004 Sep; 279(38):39374-82. PubMed ID: 15262982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid purification, site-directed mutagenesis, and initial characterization of recombinant RC3/neurogranin.
    Gerendasy DD; Herron SR; Wong KK; Watson JB; Sutcliffe JG
    J Mol Neurosci; 1994; 5(3):133-48. PubMed ID: 7654517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuromodulin (GAP-43) can regulate a calmodulin-dependent target in vitro.
    Slemmon JR; Martzen MR
    Biochemistry; 1994 May; 33(18):5653-60. PubMed ID: 7514037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The interactions of the brain-specific calmodulin-binding protein kinase C substrate, neuromodulin (GAP 43), with membrane phospholipids.
    Houbre D; Duportail G; Deloulme JC; Baudier J
    J Biol Chem; 1991 Apr; 266(11):7121-31. PubMed ID: 1826685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of phosphorylation on the activity and structure of the neuronal IQ motif protein, PEP-19.
    Dickerson JB; Morgan MA; Mishra A; Slaughter CA; Morgan JI; Zheng J
    Brain Res; 2006 May; 1092(1):16-27. PubMed ID: 16740252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a 7.5-kDa protein kinase C substrate (RC3 protein, neurogranin) from rat brain.
    Huang KP; Huang FL; Chen HC
    Arch Biochem Biophys; 1993 Sep; 305(2):570-80. PubMed ID: 8080473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dephosphorylation of protein kinase C substrates, neurogranin, neuromodulin, and MARCKS, by calcineurin and protein phosphatases 1 and 2A.
    Seki K; Chen HC; Huang KP
    Arch Biochem Biophys; 1995 Feb; 316(2):673-9. PubMed ID: 7864622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and dynamic characterization of a neuron-specific protein kinase C substrate, neurogranin.
    Ran X; Miao HH; Sheu FS; Yang D
    Biochemistry; 2003 May; 42(17):5143-50. PubMed ID: 12718558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of neurogranin in the modulation of calcium/calmodulin-dependent protein kinase II, synaptic plasticity, and spatial learning: a study with knockout mice.
    Pak JH; Huang FL; Li J; Balschun D; Reymann KG; Chiang C; Westphal H; Huang KP
    Proc Natl Acad Sci U S A; 2000 Oct; 97(21):11232-7. PubMed ID: 11016969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.