These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 11414886)

  • 1. Diffusion in stationary flow from mesoscopic nonequilibrium thermodynamics.
    Santamaría-Holek I; Reguera D; Rubí JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 1):051106. PubMed ID: 11414886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Translational and rotational dynamics of colloidal particles in suspension: effect of shear.
    Hernández-Contreras M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022317. PubMed ID: 24032842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalized hydrodynamics of a dilute suspension of finite-sized particles: dynamic viscosity.
    Hernández SI; Santamaría-Holek I; Mendoza CI; del Castillo LF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):051401. PubMed ID: 17279903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesoscopic nonequilibrium thermodynamics approach to non-Debye dielectric relaxation.
    Híjar H; Méndez-Bermúdez JG; Santamaría-Holek I
    J Chem Phys; 2010 Feb; 132(8):084502. PubMed ID: 20192302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Harmonically bound Brownian motion in fluids under shear: Fokker-Planck and generalized Langevin descriptions.
    Híjar H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022139. PubMed ID: 25768490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colored-noise Fokker-Planck equation for the shear-induced self-diffusion process of non-Brownian particles.
    Lukassen LJ; Oberlack M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052145. PubMed ID: 25353777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamics and fractional Fokker-Planck equations.
    Sokolov IM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 2):056111. PubMed ID: 11414965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kappa and other nonequilibrium distributions from the Fokker-Planck equation and the relationship to Tsallis entropy.
    Shizgal BD
    Phys Rev E; 2018 May; 97(5-1):052144. PubMed ID: 29906998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonequilibrium inertial dynamics of colloidal systems.
    Marini Bettolo Marconi U; Tarazona P
    J Chem Phys; 2006 Apr; 124(16):164901. PubMed ID: 16674164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport of matter and energy in a mesoscopic thermo-hydrodynamic approach.
    Madureira JR
    J Chem Phys; 2004 Apr; 120(16):7526-31. PubMed ID: 15267666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local quasi-equilibrium description of slow relaxation systems.
    Santamaría-Holek I; Pérez-Madrid A; Rubí JM
    J Chem Phys; 2004 Feb; 120(6):2818-23. PubMed ID: 15268428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Levy diffusion in a force field, huber relaxation kinetics, and nonequilibrium thermodynamics: H theorem for enhanced diffusion with Levy white noise.
    Vlad MO; Ross J; Schneider FW
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt A):1743-63. PubMed ID: 11088636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics.
    Bazant MZ
    Acc Chem Res; 2013 May; 46(5):1144-60. PubMed ID: 23520980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast Hamiltonian chaos: Heat bath without thermodynamic limit.
    Riegert A; Just W; Baba N; Kantz H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 2):066211. PubMed ID: 18233908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The way from microscopic many-particle theory to macroscopic hydrodynamics.
    Haussmann R
    J Phys Condens Matter; 2016 Mar; 28(11):113001. PubMed ID: 26902659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interacting Brownian dynamics in a nonequilibrium particle bath.
    Steffenoni S; Kroy K; Falasco G
    Phys Rev E; 2016 Dec; 94(6-1):062139. PubMed ID: 28085452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy representation for nonequilibrium brownian-like systems: steady states and fluctuation relations.
    Lev BI; Kiselev AD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 1):031101. PubMed ID: 21230019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An effective rate equation approach to reaction kinetics in small volumes: theory and application to biochemical reactions in nonequilibrium steady-state conditions.
    Grima R
    J Chem Phys; 2010 Jul; 133(3):035101. PubMed ID: 20649359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Straightforward quantum-mechanical derivation of the Crooks fluctuation theorem and the Jarzynski equality.
    Cohen D; Imry Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011111. PubMed ID: 23005372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison between theoretical values and simulation results of viscosity for the dissipative particle dynamics method.
    Satoh A; Majima T
    J Colloid Interface Sci; 2005 Mar; 283(1):251-66. PubMed ID: 15694446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.