These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
323 related articles for article (PubMed ID: 11414970)
1. Universality and corrections to scaling in the ballistic deposition model. Aarão Reis FD Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 2):056116. PubMed ID: 11414970 [TBL] [Abstract][Full Text] [Related]
2. Crossover effects in a discrete deposition model with Kardar-Parisi-Zhang scaling. Chame A; Aarão Reis FD Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 1):051104. PubMed ID: 12513464 [TBL] [Abstract][Full Text] [Related]
3. Origins of scaling corrections in ballistic growth models. Alves SG; Oliveira TJ; Ferreira SC Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052405. PubMed ID: 25493801 [TBL] [Abstract][Full Text] [Related]
4. Large-scale simulations of ballistic deposition: the approach to asymptotic scaling. Farnudi B; Vvedensky DD Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 1):020103. PubMed ID: 21405801 [TBL] [Abstract][Full Text] [Related]
5. Universality in two-dimensional Kardar-Parisi-Zhang growth. Reis FD Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 1):021610. PubMed ID: 14995461 [TBL] [Abstract][Full Text] [Related]
6. Numerical study of the Kardar-Parisi-Zhang equation. Miranda VG; Aarão Reis FD Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031134. PubMed ID: 18517356 [TBL] [Abstract][Full Text] [Related]
7. Scaling, cumulant ratios, and height distribution of ballistic deposition in 3+1 and 4+1 dimensions. Alves SG; Ferreira SC Phys Rev E; 2016 May; 93(5):052131. PubMed ID: 27300853 [TBL] [Abstract][Full Text] [Related]
8. Fluctuation and relaxation properties of pulled fronts: A scenario for nonstandard kardar-parisi-zhang scaling. Tripathy G; van Saarloos W Phys Rev Lett; 2000 Oct; 85(17):3556-9. PubMed ID: 11030949 [TBL] [Abstract][Full Text] [Related]
9. Scaling of ballistic deposition from a Langevin equation. Haselwandter CA; Vvedensky DD Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):040101. PubMed ID: 16711773 [TBL] [Abstract][Full Text] [Related]
10. Directed avalanche processes with underlying interface dynamics. Chen CC; den Nijs M Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 1):011306. PubMed ID: 12241353 [TBL] [Abstract][Full Text] [Related]
11. What is the connection between ballistic deposition and the Kardar-Parisi-Zhang equation? Katzav E; Schwartz M Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061608. PubMed ID: 15697382 [TBL] [Abstract][Full Text] [Related]
12. Width and extremal height distributions of fluctuating interfaces with window boundary conditions. Carrasco IS; Oliveira TJ Phys Rev E; 2016 Jan; 93(1):012801. PubMed ID: 26871135 [TBL] [Abstract][Full Text] [Related]
13. Surface and bulk properties of deposits grown with a bidisperse ballistic deposition model. Silveira FA; Aarão Reis FD Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 1):061608. PubMed ID: 17677274 [TBL] [Abstract][Full Text] [Related]
14. Kardar-Parisi-Zhang universality class in (2+1) dimensions: universal geometry-dependent distributions and finite-time corrections. Oliveira TJ; Alves SG; Ferreira SC Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):040102. PubMed ID: 23679356 [TBL] [Abstract][Full Text] [Related]
15. Nonperturbative renormalization group for the Kardar-Parisi-Zhang equation: general framework and first applications. Canet L; Chaté H; Delamotte B; Wschebor N Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):061128. PubMed ID: 22304061 [TBL] [Abstract][Full Text] [Related]
16. Unpredicted Scaling of the One-Dimensional Kardar-Parisi-Zhang Equation. Fontaine C; Vercesi F; Brachet M; Canet L Phys Rev Lett; 2023 Dec; 131(24):247101. PubMed ID: 38181147 [TBL] [Abstract][Full Text] [Related]
18. Restoring the Fluctuation-Dissipation Theorem in Kardar-Parisi-Zhang Universality Class through a New Emergent Fractal Dimension. Gomes-Filho MS; de Castro P; Liarte DB; Oliveira FA Entropy (Basel); 2024 Mar; 26(3):. PubMed ID: 38539771 [TBL] [Abstract][Full Text] [Related]
19. Anomalous ballistic scaling in the tensionless or inviscid Kardar-Parisi-Zhang equation. Rodríguez-Fernández E; Santalla SN; Castro M; Cuerno R Phys Rev E; 2022 Aug; 106(2-1):024802. PubMed ID: 36109999 [TBL] [Abstract][Full Text] [Related]
20. Accessibility of the surface fractal dimension during film growth. Mozo Luis EE; Oliveira FA; de Assis TA Phys Rev E; 2023 Mar; 107(3-1):034802. PubMed ID: 37073068 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]