These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 11414973)
1. Phase transitions and oscillations in a lattice prey-predator model. Antal T; Droz M Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 2):056119. PubMed ID: 11414973 [TBL] [Abstract][Full Text] [Related]
2. Critical behavior of a lattice prey-predator model. Antal T; Droz M; Lipowski A; Odor G Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):036118. PubMed ID: 11580405 [TBL] [Abstract][Full Text] [Related]
3. Oscillations and dynamics in a two-dimensional prey-predator system. Kowalik M; Lipowski A; Ferreira AL Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066107. PubMed ID: 12513347 [TBL] [Abstract][Full Text] [Related]
4. Phase transitions in predator-prey systems. Nagano S; Maeda Y Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011915. PubMed ID: 22400599 [TBL] [Abstract][Full Text] [Related]
5. Lotka-Volterra predator-prey model with periodically varying carrying capacity. Swailem M; Täuber UC Phys Rev E; 2023 Jun; 107(6-1):064144. PubMed ID: 37464668 [TBL] [Abstract][Full Text] [Related]
6. Phase diagram of a cyclic predator-prey model with neutral-pair exchange. Guisoni NC; Loscar ES; Girardi M Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022133. PubMed ID: 24032801 [TBL] [Abstract][Full Text] [Related]
7. Oscillatory behavior in a lattice prey-predator system. Lipowski A Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Nov; 60(5 Pt A):5179-84. PubMed ID: 11970386 [TBL] [Abstract][Full Text] [Related]
8. Critical and oscillatory behavior of a system of smart preys and predators. Rozenfeld AF; Albano EV Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 1):061907. PubMed ID: 11415145 [TBL] [Abstract][Full Text] [Related]
9. The dynamics of two diffusively coupled predator-prey populations. Jansen VA Theor Popul Biol; 2001 Mar; 59(2):119-31. PubMed ID: 11302757 [TBL] [Abstract][Full Text] [Related]
11. Totally asymmetric simple exclusion process with Langmuir kinetics. Parmeggiani A; Franosch T; Frey E Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046101. PubMed ID: 15600454 [TBL] [Abstract][Full Text] [Related]
12. Oscillations in a size-structured prey-predator model. Bhattacharya S; Martcheva M Math Biosci; 2010 Nov; 228(1):31-44. PubMed ID: 20800071 [TBL] [Abstract][Full Text] [Related]
13. Pattern formation, long-term transients, and the Turing-Hopf bifurcation in a space- and time-discrete predator-prey system. Rodrigues LA; Mistro DC; Petrovskii S Bull Math Biol; 2011 Aug; 73(8):1812-40. PubMed ID: 20972714 [TBL] [Abstract][Full Text] [Related]
15. Size and scaling of predator-prey dynamics. Weitz JS; Levin SA Ecol Lett; 2006 May; 9(5):548-57. PubMed ID: 16643300 [TBL] [Abstract][Full Text] [Related]
16. Dynamical systems on large networks with predator-prey interactions are stable and exhibit oscillations. Mambuca AM; Cammarota C; Neri I Phys Rev E; 2022 Jan; 105(1-1):014305. PubMed ID: 35193197 [TBL] [Abstract][Full Text] [Related]
17. Analysis of a competitive prey-predator system with a prey refuge. Sarwardi S; Mandal PK; Ray S Biosystems; 2012 Dec; 110(3):133-48. PubMed ID: 22944143 [TBL] [Abstract][Full Text] [Related]
18. Spatial dynamics in a predator-prey model with herd behavior. Yuan S; Xu C; Zhang T Chaos; 2013 Sep; 23(3):033102. PubMed ID: 24089938 [TBL] [Abstract][Full Text] [Related]
19. Evolutionary dynamics of prey exploitation in a metapopulation of predators. Pels B; de Roos AM; Sabelis MW Am Nat; 2002 Feb; 159(2):172-89. PubMed ID: 18707412 [TBL] [Abstract][Full Text] [Related]
20. Role of nutrient bound of prey on the dynamics of predator-mediated competitive-coexistence. Roy S; Alam S; Chattopadhyay J Biosystems; 2005 Nov; 82(2):143-53. PubMed ID: 16112387 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]