These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 11415073)

  • 61. Signatures of noise-enhanced stability in metastable states.
    Fiasconaro A; Spagnolo B; Boccaletti S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 1):061110. PubMed ID: 16485934
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Detection of weak signals in memory thermal baths.
    Jiménez-Aquino JI; Velasco RM; Romero-Bastida M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052146. PubMed ID: 25493778
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Anomalous diffusion for overdamped particles driven by cross-correlated white noise sources.
    Denisov SI; Vitrenko AN; Horsthemke W; Hänggi P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):036120. PubMed ID: 16605611
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Rotation in an asymmetric multidimensional periodic potential due to colored noise.
    Ghosh AW; Khare SV
    Phys Rev Lett; 2000 Jun; 84(23):5243-6. PubMed ID: 10990914
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Noise-induced transitions in rugged energy landscapes.
    Duncan AB; Kalliadasis S; Pavliotis GA; Pradas M
    Phys Rev E; 2016 Sep; 94(3-1):032107. PubMed ID: 27739696
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Noise-induced transport with low randomness.
    Lindner B; Schimansky-Geier L
    Phys Rev Lett; 2002 Dec; 89(23):230602. PubMed ID: 12484991
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Diffusion in a quasi-one-dimensional system on a periodic substrate.
    Carvalho JC; Nelissen K; Ferreira WP; Farias GA; Peeters FM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021136. PubMed ID: 22463181
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Transition from single-file to two-dimensional diffusion of interacting particles in a quasi-one-dimensional channel.
    Lucena D; Tkachenko DV; Nelissen K; Misko VR; Ferreira WP; Farias GA; Peeters FM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031147. PubMed ID: 22587078
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Resonant-pattern formation induced by additive noise in periodically forced reaction-diffusion systems.
    Wang H; Zhang K; Ouyang Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):036210. PubMed ID: 17025732
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Brownian escape and force-driven transport through entropic barriers: Particle size effect.
    Cheng KL; Sheng YJ; Tsao HK
    J Chem Phys; 2008 Nov; 129(18):184901. PubMed ID: 19045425
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Transport and diffusion of overdamped Brownian particles in random potentials.
    Simon MS; Sancho JM; Lindenberg K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062105. PubMed ID: 24483384
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Exact time-average distribution for a stationary non-Markovian massive Brownian particle coupled to two heat baths.
    Soares-Pinto DO; Morgado WA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 1):011103. PubMed ID: 18351814
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Entropic particle transport: higher-order corrections to the Fick-Jacobs diffusion equation.
    Martens S; Schmid G; Schimansky-Geier L; Hänggi P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):051135. PubMed ID: 21728518
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Brownian particle having a fluctuating mass.
    Ausloos M; Lambiotte R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 1):011105. PubMed ID: 16486120
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Brownian particles in stationary and moving traps: the mean and variance of the heat distribution function.
    Chatterjee D; Cherayil BJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 1):011118. PubMed ID: 19658664
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Brownian motion of an asymmetrical particle in a potential field.
    Grima R; Yaliraki SN
    J Chem Phys; 2007 Aug; 127(8):084511. PubMed ID: 17764273
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Brownian motion in inhomogeneous suspensions.
    Yang M; Ripoll M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062110. PubMed ID: 23848630
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Driven Brownian transport through arrays of symmetric obstacles.
    Ghosh PK; Hänggi P; Marchesoni F; Martens S; Nori F; Schimansky-Geier L; Schmid G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011101. PubMed ID: 22400506
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Competing effects of particle and medium inertia on particle diffusion in viscoelastic materials, and their ramifications for passive microrheology.
    Indei T; Schieber JD; Córdoba A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041504. PubMed ID: 22680480
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Self-diffusion in a system of interacting Langevin particles.
    Dean DS; Lefèvre A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):061111. PubMed ID: 15244544
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.