These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 11415149)
1. Test of the fractional Debye-Stokes-Einstein equation in low-molecular-weight glass-forming liquids under condition of high compression. Bielowka SH; Psurek T; Ziolo J; Paluch M Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 1):062301. PubMed ID: 11415149 [TBL] [Abstract][Full Text] [Related]
2. Structure-dependent dc conductivity and relaxation time in the Debye-Stokes-Einstein equation. Power G; Vij JK; Johari GP J Phys Chem B; 2007 Sep; 111(38):11201-8. PubMed ID: 17764166 [TBL] [Abstract][Full Text] [Related]
3. Fractional Debye-Stokes-Einstein behaviour in an ultraviscous nanocolloid: glycerol and silver nanoparticles. Starzonek S; Rzoska SJ; Drozd-Rzoska A; Pawlus S; Biała E; Martinez-Garcia JC; Kistersky L Soft Matter; 2015 Jul; 11(27):5554-62. PubMed ID: 26067719 [TBL] [Abstract][Full Text] [Related]
4. Fractional Stokes-Einstein and Debye-Stokes-Einstein relations in a network-forming liquid. Becker SR; Poole PH; Starr FW Phys Rev Lett; 2006 Aug; 97(5):055901. PubMed ID: 17026116 [TBL] [Abstract][Full Text] [Related]
6. On enhanced translational diffusion or the fractional Stokes-Einstein relation observed in a supercooled ionic liquid. Ngai KL J Phys Chem B; 2006 Dec; 110(51):26211-4. PubMed ID: 17181278 [TBL] [Abstract][Full Text] [Related]
7. Changes in dynamic crossover with temperature and pressure in glass-forming diethyl phthalate. Pawlus S; Paluch M; Sekula M; Ngai KL; Rzoska SJ; Ziolo J Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 1):021503. PubMed ID: 14524977 [TBL] [Abstract][Full Text] [Related]
8. On the nonlinear variation of dc conductivity with dielectric relaxation time. Johari GP; Andersson O J Chem Phys; 2006 Sep; 125(12):124501. PubMed ID: 17014185 [TBL] [Abstract][Full Text] [Related]
10. The fractional Stokes-Einstein equation: application to Lennard-Jones, molecular, and ionic liquids. Harris KR J Chem Phys; 2009 Aug; 131(5):054503. PubMed ID: 19673570 [TBL] [Abstract][Full Text] [Related]
11. Dielectric and mechanical relaxation in isooctylcyanobiphenyl (8*OCB). Pawlus S; Mierzwa M; Paluch M; Rzoska SJ; Roland CM J Phys Condens Matter; 2010 Jun; 22(23):235101. PubMed ID: 21393760 [TBL] [Abstract][Full Text] [Related]
12. Effect of pressure on molecular and ionic motions in ultraviscous acetaminophen-aspirin mixture. Andersson O; Johari GP; Shanker RM J Pharm Sci; 2006 Nov; 95(11):2406-18. PubMed ID: 16886195 [TBL] [Abstract][Full Text] [Related]
13. Glassy and fluidlike behavior of the isotropic phase of n-cyanobiphenyls in broad-band dielectric relaxation studies. Rzoska SJ; Paluch M; Drozd-Rzoska A; Ziolo J; Janik P; Czupryński K Eur Phys J E Soft Matter; 2002 Apr; 7(4):387-92. PubMed ID: 27638170 [TBL] [Abstract][Full Text] [Related]
14. Compliance of the Stokes-Einstein model and breakdown of the Stokes-Einstein-Debye model for a urea-based supramolecular polymer of high viscosity. Świergiel J; Bouteiller L; Jadżyn J Soft Matter; 2014 Nov; 10(42):8457-63. PubMed ID: 25230766 [TBL] [Abstract][Full Text] [Related]
15. Test of the Einstein-Debye relation in supercooled dibutylphthalate at pressures up to 1.4 GPa. Paluch M; Sekula M; Pawlus S; Rzoska SJ; Ziolo J; Roland CM Phys Rev Lett; 2003 May; 90(17):175702. PubMed ID: 12786082 [TBL] [Abstract][Full Text] [Related]
17. Pressure dependence of structural relaxation time in terms of the Adam-Gibbs model. Casalini R; Capaccioli S; Lucchesi M; Rolla PA; Corezzi S Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 1):031207. PubMed ID: 11308642 [TBL] [Abstract][Full Text] [Related]
18. Dynamics of methanol in ionic liquids: validity of the Stokes-Einstein and Stokes-Einstein-Debye relations. Herold E; Strauch M; Michalik D; Appelhagen A; Ludwig R Chemphyschem; 2014 Oct; 15(14):3040-8. PubMed ID: 25055972 [TBL] [Abstract][Full Text] [Related]