These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 1141519)

  • 1. Electron-donor and affinity constants and their application to the inhibition of acetylcholinesterase by carbamates.
    Hetnarski B; O'brien RD
    J Agric Food Chem; 1975; 23(4):709-13. PubMed ID: 1141519
    [No Abstract]   [Full Text] [Related]  

  • 2. The role of hydrophobic and electron donor properties in acetylcholinesterase inhibition by carbamates.
    Abdel-Aal YA
    Biochem Pharmacol; 1977 Nov; 26(22):2187-9. PubMed ID: 588302
    [No Abstract]   [Full Text] [Related]  

  • 3. Ortho effects for inhibition mechanisms of butyrylcholinesterase by o-substituted phenyl N-butyl carbamates and comparison with acetylcholinesterase, cholesterol esterase, and lipase.
    Lin G; Lee YR; Liu YC; Wu YG
    Chem Res Toxicol; 2005 Jul; 18(7):1124-31. PubMed ID: 16022504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of N-alkyl groups of substituted phenyl-N-alkyl carbamates on the inhibition of human plasma cholinesterase.
    Voss G
    Arch Toxicol; 1976 Oct; 36(2):117-20. PubMed ID: 1036885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics for the inhibition of acetylcholinesterase from the electric eel by some organophosphates and carbamates.
    Forsberg A; Puu G
    Eur J Biochem; 1984 Apr; 140(1):153-6. PubMed ID: 6705793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A spectrophotometric assay for determining the rate constants of acetylcholinesterase inhibitions.
    Stoops JK; Bender ML
    Anal Biochem; 1975 Feb; 63(2):543-54. PubMed ID: 235858
    [No Abstract]   [Full Text] [Related]  

  • 7. Amino acid residues involved in the interaction of acetylcholinesterase and butyrylcholinesterase with the carbamates Ro 02-0683 and bambuterol, and with terbutaline.
    Kovarik Z; Radić Z; Grgas B; Skrinjarić-Spoljar M; Reiner E; Simeon-Rudolf V
    Biochim Biophys Acta; 1999 Aug; 1433(1-2):261-71. PubMed ID: 10446376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbamates with differential mechanism of inhibition toward acetylcholinesterase and butyrylcholinesterase.
    Darvesh S; Darvesh KV; McDonald RS; Mataija D; Walsh R; Mothana S; Lockridge O; Martin E
    J Med Chem; 2008 Jul; 51(14):4200-12. PubMed ID: 18570368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-activity relationships for insecticidal carbamates.
    Metcalf RL
    Bull World Health Organ; 1971; 44(1-3):43-78. PubMed ID: 5315358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ortho effects in quantitative structure-activity relationships for acetylcholinesterase inhibition by aryl carbamates.
    Lin G; Liu YC; Lin YF; Wu YG
    J Enzyme Inhib Med Chem; 2004 Oct; 19(5):395-401. PubMed ID: 15648653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Structure-activity relationships of acetylcholinesterase inhibitors with carbamate structure].
    Schmidt K; Michel H; Hiekel HG; Franke R; Barth A
    Pharmazie; 1977; 32(8-9):522-5. PubMed ID: 594120
    [No Abstract]   [Full Text] [Related]  

  • 12. Charge transfer in cholinesterase inhibition. Role of the conjugation between carbamyl and aryl groups of aromatic carbamates.
    Hetnarski B; O'Brien RD
    Biochemistry; 1973 Sep; 12(20):3883-7. PubMed ID: 4795678
    [No Abstract]   [Full Text] [Related]  

  • 13. Structure-activity relationships of cholinesterase inhibitors. I. Quantum mechanical study of affinities of phenyl N-methyl carbamates.
    Goldblum A
    Mol Pharmacol; 1983 Nov; 24(3):436-42. PubMed ID: 6633506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetylcholinesterase inhibition by substituted phenyl N-alkyl carbamates.
    Yu CC; Kearns CW; Metcalf RL
    J Agric Food Chem; 1972; 20(3):537-40. PubMed ID: 5072301
    [No Abstract]   [Full Text] [Related]  

  • 15. Synthesis and enzymatic evaluation of pyridostigmine analogs used to probe the active sites of acetylcholinesterase and butyrylcholinesterase.
    Millner OE; Stanley JW; Purcell WP
    J Med Chem; 1974 Jan; 17(1):13-8. PubMed ID: 4808464
    [No Abstract]   [Full Text] [Related]  

  • 16. Comparison of active sites of butyrylcholinesterase and acetylcholinesterase based on inhibition by geometric isomers of benzene-di-N-substituted carbamates.
    Chiou SY; Huang CF; Hwang MT; Lin G
    J Biochem Mol Toxicol; 2009; 23(5):303-8. PubMed ID: 19827033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of acetylcholinesterase by the enantiomers of isopropyl S-2-trimethylammonioethyl methylphosphono-thioate iodide. Affinity and phosphorylation constants.
    de Jong JP; van Dijk C
    Biochim Biophys Acta; 1972 Jun; 268(3):680-9. PubMed ID: 5064446
    [No Abstract]   [Full Text] [Related]  

  • 18. Effect of tetraethylammonium ions on the affinity and phosphorylation or carbamylation constants of malaoxon, Tetram and Temik with acetylcholinesterase.
    Chiu YC; Dauterman WC
    Biochem Pharmacol; 1970 May; 19(5):1856-7. PubMed ID: 5535187
    [No Abstract]   [Full Text] [Related]  

  • 19. Carbonic anhydrase and acetylcholinesterase inhibitory effects of carbamates and sulfamoylcarbamates.
    Göçer H; Akincioğlu A; Göksu S; Gülçin İ; Supuran CT
    J Enzyme Inhib Med Chem; 2015 Apr; 30(2):316-20. PubMed ID: 24964347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Affinity of human brain acetylcholinesterase to some organophosphates and carbamates in vitro.
    Patocka J; Bajgar J
    J Neurochem; 1971 Dec; 18(12):2545-6. PubMed ID: 5002755
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.