These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 11415196)

  • 1. Monte Carlo simulations of short-time critical dynamics with a conserved quantity.
    Zheng B; Luo HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066130. PubMed ID: 11415196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Short-time dynamics for the spin-3/2 Blume-Capel model.
    Grandi BC; Figueiredo W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056109. PubMed ID: 15600694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-dependent Monte Carlo simulations of critical and Lifshitz points of the axial-next-nearest-neighbor Ising model.
    da Silva R; Alves N; Drugowich de Felício JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012131. PubMed ID: 23410307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical behavior of an Ising system on the Sierpinski carpet: a short-time dynamics study.
    Bab MA; Fabricius G; Albano EV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036139. PubMed ID: 15903525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Critical behavior of the mixed-spin Ising model with two competing dynamics.
    Godoy M; Figueiredo W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026111. PubMed ID: 11863591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical behavior of a three-dimensional random-bond Ising model using finite-time scaling with extensive Monte Carlo renormalization-group method.
    Xiong W; Zhong F; Yuan W; Fan S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051132. PubMed ID: 20866210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic phase transition, universality, and finite-size scaling in the two-dimensional kinetic Ising model in an oscillating field.
    Korniss G; White CJ; Rikvold PA; Novotny MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016120. PubMed ID: 11304327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-time critical dynamics at perfect and imperfect surfaces.
    Lin SZ; Zheng B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 1):011127. PubMed ID: 18763939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Short-time dynamics and critical behavior of the three-dimensional site-diluted Ising model.
    Prudnikov VV; Prudnikov PV; Krinitsyn AS; Vakilov AN; Pospelov EA; Rychkov MV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011130. PubMed ID: 20365346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonequilibrium critical dynamics of the two-dimensional Ising model quenched from a correlated initial state.
    Környei L; Pleimling M; Iglói F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 1):011127. PubMed ID: 18351838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluctuation cumulant behavior for the field-pulse-induced magnetization-reversal transition in Ising models.
    Chatterjee A; Chakrabarti BK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046113. PubMed ID: 12786442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalized Metropolis dynamics with a generalized master equation: an approach for time-independent and time-dependent Monte Carlo simulations of generalized spin systems.
    da Silva R; Drugowich de Felício JR; Martinez AS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066707. PubMed ID: 23005243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonequilibrium antiferromagnetic mixed-spin Ising model.
    Godoy M; Figueiredo W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2A):036131. PubMed ID: 12366208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short-time dynamics of a family of XY noncollinear magnets.
    Bekhechi S; Southern BW; Peles A; Mouhanna D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 2):016109. PubMed ID: 16907153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic phase transition in the two-dimensional kinetic Ising model in an oscillating field: universality with respect to the stochastic dynamics.
    Buendía GM; Rikvold PA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051108. PubMed ID: 19113096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Universality of the Ising and the S=1 model on Archimedean lattices: a Monte Carlo determination.
    Malakis A; Gulpinar G; Karaaslan Y; Papakonstantinou T; Aslan G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031146. PubMed ID: 22587077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aging exponents for nonequilibrium dynamics following quenches from critical points.
    Das K; Vadakkayil N; Das SK
    Phys Rev E; 2020 Jun; 101(6-1):062112. PubMed ID: 32688577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Universality of domain growth in antiferromagnets with spin-exchange kinetics.
    Das P; Saha-Dasgupta T; Puri S
    Eur Phys J E Soft Matter; 2017 Nov; 40(11):94. PubMed ID: 29110108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generalized dynamic scaling for quantum critical relaxation in imaginary time.
    Zhang S; Yin S; Zhong F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042104. PubMed ID: 25375435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonequilibrium critical dynamics of the two-dimensional Ashkin-Teller model at the Baxter line.
    Fernandes HA; da Silva R; Caparica AA; de Felício JRD
    Phys Rev E; 2017 Apr; 95(4-1):042105. PubMed ID: 28505782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.