These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Secondary instabilities of hexagonal patterns in a Bénard-Marangoni convection experiment. Semwogerere D; Schatz MF Phys Rev Lett; 2004 Sep; 93(12):124502. PubMed ID: 15447268 [TBL] [Abstract][Full Text] [Related]
6. Instabilities of convection patterns in a shear-thinning fluid between plates of finite conductivity. Varé T; Nouar C; Métivier C Phys Rev E; 2017 Oct; 96(4-1):043109. PubMed ID: 29347553 [TBL] [Abstract][Full Text] [Related]
7. Oscillatory long-wave Marangoni convection in a layer of a binary liquid: hexagonal patterns. Shklyaev S; Nepomnyashchy AA; Oron A Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056327. PubMed ID: 22181518 [TBL] [Abstract][Full Text] [Related]
8. Nonlinear large-scale Marangoni convection in a heated liquid layer with insoluble surfactant. Mikishev A; Nepomnyashchy A Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):046306. PubMed ID: 21230389 [TBL] [Abstract][Full Text] [Related]
9. Evolution of hexagonal patterns from controlled initial conditions in a Bénard-Marangoni convection experiment. Semwogerere D; Schatz MF Phys Rev Lett; 2002 Feb; 88(5):054501. PubMed ID: 11863731 [TBL] [Abstract][Full Text] [Related]
10. Defect chaos and bursts: hexagonal rotating convection and the complex Ginzburg-Landau equation. Madruga S; Riecke H; Pesch W Phys Rev Lett; 2006 Feb; 96(7):074501. PubMed ID: 16606097 [TBL] [Abstract][Full Text] [Related]
11. Defect chaos of oscillating hexagons in rotating convection. Echebarria B; Riecke H Phys Rev Lett; 2000 May; 84(21):4838-41. PubMed ID: 10990811 [TBL] [Abstract][Full Text] [Related]
12. Multiresonant forcing of the complex Ginzburg-Landau equation: pattern selection. Conway JM; Riecke H Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):057202. PubMed ID: 18233797 [TBL] [Abstract][Full Text] [Related]
13. Weakly nonlinear study of Marangoni instabilities in an evaporating liquid layer. Dondlinger M; Margerit J; Dauby PC J Colloid Interface Sci; 2005 Mar; 283(2):522-32. PubMed ID: 15721929 [TBL] [Abstract][Full Text] [Related]
14. Long-wave Marangoni convection in a thin film heated from below. Shklyaev S; Alabuzhev AA; Khenner M Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016328. PubMed ID: 22400678 [TBL] [Abstract][Full Text] [Related]
15. Oscillatory and monotonic modes of long-wave Marangoni convection in a thin film. Shklyaev S; Khenner M; Alabuzhev AA Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 2):025302. PubMed ID: 20866865 [TBL] [Abstract][Full Text] [Related]
16. Stability of Turing patterns in the Brusselator model. Peña B; Pérez-García C Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056213. PubMed ID: 11736060 [TBL] [Abstract][Full Text] [Related]
17. Dielectrophoretic Rayleigh-Bénard convection under microgravity conditions. Yoshikawa HN; Tadie Fogaing M; Crumeyrolle O; Mutabazi I Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043003. PubMed ID: 23679509 [TBL] [Abstract][Full Text] [Related]
18. Description of mesoscale pattern formation in shallow convective cloud fields by using time-dependent Ginzburg-Landau and Swift-Hohenberg stochastic equations. Monroy DL; Naumis GG Phys Rev E; 2021 Mar; 103(3-1):032312. PubMed ID: 33862782 [TBL] [Abstract][Full Text] [Related]
19. Thermal convection in a cylinder and the problem of planform selection in an internally heated fluid layer. Kolmychkov VV; Shcheritsa OV; Mazhorova OS Phys Rev E; 2016 Dec; 94(6-1):063118. PubMed ID: 28085453 [TBL] [Abstract][Full Text] [Related]
20. Planform selection in Bénard-Marangoni convection: l hexagons versus g hexagons. Thess A; Bestehorn M Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1995 Dec; 52(6):6358-6367. PubMed ID: 9964155 [No Abstract] [Full Text] [Related] [Next] [New Search]