These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 11415254)
1. Nystrom plus correction method for solving bound-state equations in momentum space. Tang A; Norbury JW Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066703. PubMed ID: 11415254 [TBL] [Abstract][Full Text] [Related]
2. Direct numerical solution of the Lippmann-Schwinger equation in coordinate space without partial-wave decomposition. Kuruoğlu ZC Phys Rev E; 2016 Nov; 94(5-1):053303. PubMed ID: 27967101 [TBL] [Abstract][Full Text] [Related]
3. Efficient Nyström-type method for the solution of highly oscillatory Volterra integral equations of the second kind. Wu Q; Sun M PLoS One; 2023; 18(12):e0295584. PubMed ID: 38096189 [TBL] [Abstract][Full Text] [Related]
4. A three-dimensional momentum-space calculation of three-body bound state in a relativistic Faddeev scheme. Hadizadeh MR; Radin M; Mohseni K Sci Rep; 2020 Feb; 10(1):1949. PubMed ID: 32029774 [TBL] [Abstract][Full Text] [Related]
5. Iterative solution of integral equations on a basis of positive energy Sturmian functions. Rawitscher G Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026701. PubMed ID: 22463351 [TBL] [Abstract][Full Text] [Related]
6. Efficient reconstruction of dielectric objects based on integral equation approach with Gauss-Newton minimization. Tong MS; Yang K; Sheng WT; Zhu ZY IEEE Trans Image Process; 2013 Dec; 22(12):4930-7. PubMed ID: 23996559 [TBL] [Abstract][Full Text] [Related]
7. Discovery of a general method of solving the Schrödinger and dirac equations that opens a way to accurately predictive quantum chemistry. Nakatsuji H Acc Chem Res; 2012 Sep; 45(9):1480-90. PubMed ID: 22686372 [TBL] [Abstract][Full Text] [Related]
8. Free-complement local-Schrödinger-equation method for solving the Schrödinger equation of atoms and molecules: basic theories and features. Nakatsuji H; Nakashima H J Chem Phys; 2015 Feb; 142(8):084117. PubMed ID: 25725722 [TBL] [Abstract][Full Text] [Related]
9. Solving the bound-state Schrodinger equation by reproducing kernel interpolation. Hu XG; Ho TS; Rabitz H Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Feb; 61(2):2074-85. PubMed ID: 11046499 [TBL] [Abstract][Full Text] [Related]
10. Solving the Schrödinger and Dirac equations of hydrogen molecular ion accurately by the free iterative complement interaction method. Ishikawa A; Nakashima H; Nakatsuji H J Chem Phys; 2008 Mar; 128(12):124103. PubMed ID: 18376904 [TBL] [Abstract][Full Text] [Related]
11. An explicit marching-on-in-time scheme for solving the time domain Kirchhoff integral equation. Chen R; Sayed SB; Alharthi N; Keyes D; Bagci H J Acoust Soc Am; 2019 Sep; 146(3):2068. PubMed ID: 31590563 [TBL] [Abstract][Full Text] [Related]
12. Matrix algorithms for solving (in)homogeneous bound state equations. Blank M; Krassnigg A Comput Phys Commun; 2011 Jul; 182(7):1391-1401. PubMed ID: 21760640 [TBL] [Abstract][Full Text] [Related]
13. Quantum dynamics calculations using symmetrized, orthogonal Weyl-Heisenberg wavelets with a phase space truncation scheme. III. Representations and calculations. Poirier B; Salam A J Chem Phys; 2004 Jul; 121(4):1704-24. PubMed ID: 15260721 [TBL] [Abstract][Full Text] [Related]
14. Computational method for the quantum Hamilton-Jacobi equation: bound states in one dimension. Chou CC; Wyatt RE J Chem Phys; 2006 Nov; 125(17):174103. PubMed ID: 17100425 [TBL] [Abstract][Full Text] [Related]
15. A numerical solution of the linear Boltzmann equation using cubic B-splines. Khurana S; Thachuk M J Chem Phys; 2012 Mar; 136(9):094103. PubMed ID: 22401425 [TBL] [Abstract][Full Text] [Related]
16. Hybrid boundary element and finite difference method for solving the nonlinear Poisson-Boltzmann equation. Boschitsch AH; Fenley MO J Comput Chem; 2004 May; 25(7):935-55. PubMed ID: 15027106 [TBL] [Abstract][Full Text] [Related]
17. A modified phase-fitted and amplification-fitted Runge-Kutta-Nyström method for the numerical solution of the radial Schrödinger equation. Papadopoulos DF; Anastassi ZA; Simos TE J Mol Model; 2010 Aug; 16(8):1339-46. PubMed ID: 20127396 [TBL] [Abstract][Full Text] [Related]
18. Relativistic nucleon-nucleon potentials in a spin-dependent three-dimensional approach. Hadizadeh MR; Radin M; Nazari F Sci Rep; 2021 Sep; 11(1):17550. PubMed ID: 34475425 [TBL] [Abstract][Full Text] [Related]
19. Numerical solution of the stationary multicomponent nonlinear Schrödinger equation with a constraint on the angular momentum. Sandin P; Ögren M; Gulliksson M Phys Rev E; 2016 Mar; 93(3):033301. PubMed ID: 27078478 [TBL] [Abstract][Full Text] [Related]
20. Simple approach for the bound-state energy spectrum of the generalized exponential-cosine Coulomb potential. Moulay M; Mansouri A; Houamer S Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 2):017701. PubMed ID: 12636641 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]