These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 11415766)

  • 1. Critical load of the human cervical spine: an in vitro experimental study.
    Panjabi MM; Cholewicki J; Nibu K; Grauer J; Babat LB; Dvorak J
    Clin Biomech (Bristol, Avon); 1998 Jan; 13(1):11-17. PubMed ID: 11415766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Load-carrying capacity of the human cervical spine in compression is increased under a follower load.
    Patwardhan AG; Havey RM; Ghanayem AJ; Diener H; Meade KP; Dunlap B; Hodges SD
    Spine (Phila Pa 1976); 2000 Jun; 25(12):1548-54. PubMed ID: 10851105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward a more robust lower neck compressive injury tolerance-an approach combining multiple test methodologies.
    Toomey DE; Yang KH; Yoganandan N; Pintar FA; Van Ee CA
    Traffic Inj Prev; 2013; 14(8):845-52. PubMed ID: 24073773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A frontal plane model of the lumbar spine subjected to a follower load: implications for the role of muscles.
    Patwardhan AG; Meade KP; Lee B
    J Biomech Eng; 2001 Jun; 123(3):212-7. PubMed ID: 11476363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of follower load on motion and stiffness of the human thoracic spine with intact rib cage.
    Sis HL; Mannen EM; Wong BM; Cadel ES; Bouxsein ML; Anderson DE; Friis EA
    J Biomech; 2016 Oct; 49(14):3252-3259. PubMed ID: 27545081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Euler stability of the human ligamentous lumbar spine. Part II: Experiment.
    Crisco JJ; Panjabi MM; Yamamoto I; Oxland TR
    Clin Biomech (Bristol, Avon); 1992 Feb; 7(1):27-32. PubMed ID: 23915613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A follower load increases the load-carrying capacity of the lumbar spine in compression.
    Patwardhan AG; Havey RM; Meade KP; Lee B; Dunlap B
    Spine (Phila Pa 1976); 1999 May; 24(10):1003-9. PubMed ID: 10332793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The load on the lumbar spine during asymmetrical bi-manual materials handling.
    Jäger M; Luttmann A
    Ergonomics; 1992; 35(7-8):783-805. PubMed ID: 1633789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of age and injury mechanism on cervical spine injury tolerance from head contact loading.
    Yoganandan N; Chirvi S; Voo L; Pintar FA; Banerjee A
    Traffic Inj Prev; 2018 Feb; 19(2):165-172. PubMed ID: 28738168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of halo-vest components on stabilizing the injured cervical spine.
    Ivancic PC; Beauchman NN; Tweardy L
    Spine (Phila Pa 1976); 2009 Jan; 34(2):167-75. PubMed ID: 19139667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of spine morphology on intervertebral disc loads and stresses in asymptomatic adults: implications for the ideal spine.
    Keller TS; Colloca CJ; Harrison DE; Harrison DD; Janik TJ
    Spine J; 2005; 5(3):297-309. PubMed ID: 15863086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compressive follower load influences cervical spine kinematics and kinetics during simulated head-first impact in an in vitro model.
    Saari A; Dennison CR; Zhu Q; Nelson TS; Morley P; Oxland TR; Cripton PA; Itshayek E
    J Biomech Eng; 2013 Nov; 135(11):111003. PubMed ID: 23775333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of follower load on the intersegmental coupled motion characteristics of the human thoracic spine: An in vitro study using entire rib cage specimens.
    Liebsch C; Graf N; Wilke HJ
    J Biomech; 2018 Sep; 78():36-44. PubMed ID: 30031651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional flexibility characteristics of the human cervical spine in vivo.
    McClure P; Siegler S; Nobilini R
    Spine (Phila Pa 1976); 1998 Jan; 23(2):216-23. PubMed ID: 9474729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of compressive axial preload on the flexibility of the thoracolumbar spine.
    Tawackoli W; Marco R; Liebschner MA
    Spine (Phila Pa 1976); 2004 May; 29(9):988-93. PubMed ID: 15105669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is it possible to simulate physiologic loading conditions by applying pure moments? A comparison of in vivo and in vitro load components in an internal fixator.
    Wilke HJ; Rohlmann A; Neller S; Schultheiss M; Bergmann G; Graichen F; Claes LE
    Spine (Phila Pa 1976); 2001 Mar; 26(6):636-42. PubMed ID: 11246374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anterior thoracolumbar instrumentation: stiffness and load sharing characteristics of plate and rod systems.
    Brodke DS; Gollogly S; Bachus KN; Alexander Mohr R; Nguyen BK
    Spine (Phila Pa 1976); 2003 Aug; 28(16):1794-801. PubMed ID: 12923465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relevance of using a compressive preload in the cervical spine: an experimental and numerical simulating investigation.
    Barrey C; Rousseau MA; Persohn S; Campana S; Perrin G; Skalli W
    Eur J Orthop Surg Traumatol; 2015 Jul; 25 Suppl 1():S155-65. PubMed ID: 25845316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sudden and unexpected loading generates high forces on the lumbar spine.
    Mannion AF; Adams MA; Dolan P
    Spine (Phila Pa 1976); 2000 Apr; 25(7):842-52. PubMed ID: 10751296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical Contribution of the Rib Cage in the Human Cadaveric Thoracic Spine.
    Mannen EM; Anderson JT; Arnold PM; Friis EA
    Spine (Phila Pa 1976); 2015 Jul; 40(13):E760-6. PubMed ID: 25768687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.