BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 11415822)

  • 1. Three-dimensional determination of femoral-tibial contact positions under in vivo conditions using fluoroscopy.
    Hoff WA; Komistek RD; Dennis DA; Gabriel SM; Walker SA
    Clin Biomech (Bristol, Avon); 1998 Oct; 13(7):455-472. PubMed ID: 11415822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "In vivo" pose estimation of artificial knee implants using computer vision.
    Walker SA; Hoff W; Komistek R; Dennis D
    Biomed Sci Instrum; 1996; 32():143-50. PubMed ID: 8672662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Development of three-dimensional kinematic analysis system for artificial knee implants using X-ray fluoroscopic imaging].
    Yamazaki T; Watanabe T; Nakajima Y; Sugamoto K; Tomita T; Maeda D; Sato Y; Yoshikawa H; Tamura S
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2005 Jan; 61(1):79-87. PubMed ID: 15682035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A robust method for registration of three-dimensional knee implant models to two-dimensional fluoroscopy images.
    Mahfouz MR; Hoff WA; Komistek RD; Dennis DA
    IEEE Trans Med Imaging; 2003 Dec; 22(12):1561-74. PubMed ID: 14649746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A model-based method for the reconstruction of total knee replacement kinematics.
    Zuffi S; Leardini A; Catani F; Fantozzi S; Cappello A
    IEEE Trans Med Imaging; 1999 Oct; 18(10):981-91. PubMed ID: 10628957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical accuracy of model-based shape matching for measuring natural knee kinematics with single-plane fluoroscopy.
    Fregly BJ; Rahman HA; Banks SA
    J Biomech Eng; 2005 Aug; 127(4):692-9. PubMed ID: 16121540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement of depth position in 2-D/3-D registration of knee implants using single-plane fluoroscopy.
    Yamazaki T; Watanabe T; Nakajima Y; Sugamoto K; Tomita T; Yoshikawa H; Tamura S
    IEEE Trans Med Imaging; 2004 May; 23(5):602-12. PubMed ID: 15147013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The quality of bone surfaces may govern the use of model based fluoroscopy in the determination of joint laxity.
    Moewis P; Wolterbeek N; Diederichs G; Valstar E; Heller MO; Taylor WR
    Med Eng Phys; 2012 Dec; 34(10):1427-32. PubMed ID: 22342557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accuracy of single-plane fluoroscopy in determining relative position and orientation of total knee replacement components.
    Acker S; Li R; Murray H; John PS; Banks S; Mu S; Wyss U; Deluzio K
    J Biomech; 2011 Feb; 44(4):784-7. PubMed ID: 21092967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualization of femorotibial contact in total knee arthroplasty using X-ray fluoroscopy.
    Yamazaki T; Watanabe T; Nakajima Y; Sugamoto K; Tomita T; Maeda D; Sahara W; Yoshikawa H; Tamura S
    Eur J Radiol; 2005 Jan; 53(1):84-9. PubMed ID: 15607857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An in vivo determination of patellofemoral contact positions.
    Komistek RD; Dennis DA; Mabe JA; Walker SA
    Clin Biomech (Bristol, Avon); 2000 Jan; 15(1):29-36. PubMed ID: 10590342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A volumetric model-based 2D to 3D registration method for measuring kinematics of natural knees with single-plane fluoroscopy.
    Tsai TY; Lu TW; Chen CM; Kuo MY; Hsu HC
    Med Phys; 2010 Mar; 37(3):1273-84. PubMed ID: 20384265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mobile Biplane X-Ray Imaging System for Measuring 3D Dynamic Joint Motion During Overground Gait.
    Guan S; Gray HA; Keynejad F; Pandy MG
    IEEE Trans Med Imaging; 2016 Jan; 35(1):326-36. PubMed ID: 26316030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of a non-invasive fluoroscopic imaging technique for the measurement of dynamic knee joint motion.
    Li G; Van de Velde SK; Bingham JT
    J Biomech; 2008; 41(7):1616-22. PubMed ID: 18394629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model-based tracking method for measuring 3D dynamic joint motion using an alternating biplane x-ray imaging system.
    Lin CC; Li JD; Lu TW; Kuo MY; Kuo CC; Hsu HC
    Med Phys; 2018 Jun; ():. PubMed ID: 29889983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Total knee arthroplasty three-dimensional kinematic estimation prevision. From a two-dimensional fluoroscopy acquired dynamic model.
    Lebel BP; Pineau V; Gouzy SL; Geais L; Parienti JJ; Dutheil JJ; Vielpeau CH
    Orthop Traumatol Surg Res; 2011 Apr; 97(2):111-20. PubMed ID: 21439928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Approximation of the functional kinematics of posterior stabilised total knee replacements using a two-dimensional sagittal plane patello-femoral model: comparing model approximation to in vivo measurement.
    Van Duren B; Pandit H; Murray D; Gill H
    Comput Methods Biomech Biomed Engin; 2015 Aug; 18(11):1191-1199. PubMed ID: 24559039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of a low-dose hybrid RSA and fluoroscopy technique: Determination of accuracy, bias and precision.
    Ioppolo J; Börlin N; Bragdon C; Li M; Price R; Wood D; Malchau H; Nivbrant B
    J Biomech; 2007; 40(3):686-92. PubMed ID: 16533512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An automatic 2D-3D image matching method for reproducing spatial knee joint positions using single or dual fluoroscopic images.
    Zhu Z; Li G
    Comput Methods Biomech Biomed Engin; 2012; 15(11):1245-56. PubMed ID: 21806411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated Registration of 3-D Knee Implant Models to Fluoroscopic Images Using Lipschitzian Optimization.
    Flood PDL; Banks SA
    IEEE Trans Med Imaging; 2018 Jan; 37(1):326-335. PubMed ID: 29293431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.