These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 11415987)

  • 1. A putative GDP-GTP exchange factor is required for development of the excretory cell in Caenorhabditis elegans.
    Suzuki N; Buechner M; Nishiwaki K; Hall DH; Nakanishi H; Takai Y; Hisamoto N; Matsumoto K
    EMBO Rep; 2001 Jun; 2(6):530-5. PubMed ID: 11415987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Caenorhabditis elegans homolog of FGD1, the human Cdc42 GEF gene responsible for faciogenital dysplasia, is critical for excretory cell morphogenesis.
    Gao J; Estrada L; Cho S; Ellis RE; Gorski JL
    Hum Mol Genet; 2001 Dec; 10(26):3049-62. PubMed ID: 11751687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of the ELAV homologue EXC-7 in the development of the Caenorhabditis elegans excretory canals.
    Fujita M; Hawkinson D; King KV; Hall DH; Sakamoto H; Buechner M
    Dev Biol; 2003 Apr; 256(2):290-301. PubMed ID: 12679103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A network of conserved formins, regulated by the guanine exchange factor EXC-5 and the GTPase CDC-42, modulates tubulogenesis in vivo.
    Shaye DD; Greenwald I
    Development; 2016 Nov; 143(22):4173-4181. PubMed ID: 27697907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ced-10 Rac and mig-2 function redundantly and act with unc-73 trio to control the orientation of vulval cell divisions and migrations in Caenorhabditis elegans.
    Kishore RS; Sundaram MV
    Dev Biol; 2002 Jan; 241(2):339-48. PubMed ID: 11784116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. C. elegans cell migration gene mig-10 shares similarities with a family of SH2 domain proteins and acts cell nonautonomously in excretory canal development.
    Manser J; Roonprapunt C; Margolis B
    Dev Biol; 1997 Apr; 184(1):150-64. PubMed ID: 9142991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation, characterization, and mapping of the mouse and human Fgd2 genes, faciogenital dysplasia (FGD1; Aarskog syndrome) gene homologues.
    Pasteris NG; Gorski JL
    Genomics; 1999 Aug; 60(1):57-66. PubMed ID: 10458911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation, characterization, and mapping of the mouse Fgd3 gene, a new Faciogenital Dysplasia (FGD1; Aarskog Syndrome) gene homologue.
    Pasteris NG; Nagata K; Hall A; Gorski JL
    Gene; 2000 Jan; 242(1-2):237-47. PubMed ID: 10721717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The FGD homologue EXC-5 regulates apical trafficking in C. elegans tubules.
    Mattingly BC; Buechner M
    Dev Biol; 2011 Nov; 359(1):59-72. PubMed ID: 21889936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tubular Excretory Canal Structure Depends on Intermediate Filaments EXC-2 and IFA-4 in
    Al-Hashimi H; Hall DH; Ackley BD; Lundquist EA; Buechner M
    Genetics; 2018 Oct; 210(2):637-652. PubMed ID: 29945901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A C. elegans CLIC-like protein required for intracellular tube formation and maintenance.
    Berry KL; Bülow HE; Hall DH; Hobert O
    Science; 2003 Dec; 302(5653):2134-7. PubMed ID: 14684823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CHE-14, a protein with a sterol-sensing domain, is required for apical sorting in C. elegans ectodermal epithelial cells.
    Michaux G; Gansmuller A; Hindelang C; Labouesse M
    Curr Biol; 2000 Sep; 10(18):1098-107. PubMed ID: 10996790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRIP homologues maintain apical cytoskeleton to regulate tubule size in C. elegans.
    Tong X; Buechner M
    Dev Biol; 2008 May; 317(1):225-33. PubMed ID: 18384766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Requirement of the Caenorhabditis elegans RapGEF pxf-1 and rap-1 for epithelial integrity.
    Pellis-van Berkel W; Verheijen MH; Cuppen E; Asahina M; de Rooij J; Jansen G; Plasterk RH; Bos JL; Zwartkruis FJ
    Mol Biol Cell; 2005 Jan; 16(1):106-16. PubMed ID: 15525675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional regulator of programmed cell death encoded by Caenorhabditis elegans gene ces-2.
    Metzstein MM; Hengartner MO; Tsung N; Ellis RE; Horvitz HR
    Nature; 1996 Aug; 382(6591):545-7. PubMed ID: 8700229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic analysis of lysosomal trafficking in Caenorhabditis elegans.
    Hermann GJ; Schroeder LK; Hieb CA; Kershner AM; Rabbitts BM; Fonarev P; Grant BD; Priess JR
    Mol Biol Cell; 2005 Jul; 16(7):3273-88. PubMed ID: 15843430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Caenorhabditis elegans ect-2 RhoGEF gene regulates cytokinesis and migration of epidermal P cells.
    Morita K; Hirono K; Han M
    EMBO Rep; 2005 Dec; 6(12):1163-8. PubMed ID: 16170304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the let-653 gene in Caenorhabditis elegans.
    Jones SJ; Baillie DL
    Mol Gen Genet; 1995 Oct; 248(6):719-26. PubMed ID: 7476875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Caenorhabditis elegans mel-11 myosin phosphatase regulatory subunit affects tissue contraction in the somatic gonad and the embryonic epidermis and genetically interacts with the Rac signaling pathway.
    Wissmann A; Ingles J; Mains PE
    Dev Biol; 1999 May; 209(1):111-27. PubMed ID: 10208747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel
    Al-Hashimi H; Chiarelli T; Lundquist EA; Buechner M
    G3 (Bethesda); 2019 May; 9(5):1339-1353. PubMed ID: 30885922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.