BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 11416044)

  • 1. Fibronectin and the alpha(5)beta(1) integrin are under developmental and ovarian steroid regulation in the normal mouse mammary gland.
    Woodward TL; Mienaltowski AS; Modi RR; Bennett JM; Haslam SZ
    Endocrinology; 2001 Jul; 142(7):3214-22. PubMed ID: 11416044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The spatial and temporal expression of the alpha 2 beta 1 integrin and its ligands, collagen I, collagen IV, and laminin, suggest important roles in mouse mammary morphogenesis.
    Keely PJ; Wu JE; Santoro SA
    Differentiation; 1995 Jul; 59(1):1-13. PubMed ID: 7589890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estrogen and progesterone are critical regulators of Stat5a expression in the mouse mammary gland.
    Santos SJ; Haslam SZ; Conrad SE
    Endocrinology; 2008 Jan; 149(1):329-38. PubMed ID: 17884938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reciprocal regulation of extracellular matrix proteins and ovarian steroid activity in the mammary gland.
    Haslam SZ; Woodward TL
    Breast Cancer Res; 2001; 3(6):365-72. PubMed ID: 11737887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of gene expression in the bovine mammary gland by ovarian steroids.
    Connor EE; Meyer MJ; Li RW; Van Amburgh ME; Boisclair YR; Capuco AV
    J Dairy Sci; 2007 Jun; 90 Suppl 1():E55-65. PubMed ID: 17517752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Latent transforming growth factor-beta activation in mammary gland: regulation by ovarian hormones affects ductal and alveolar proliferation.
    Ewan KB; Shyamala G; Ravani SA; Tang Y; Akhurst R; Wakefield L; Barcellos-Hoff MH
    Am J Pathol; 2002 Jun; 160(6):2081-93. PubMed ID: 12057913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myoepithelial cell differentiation in the developing mammary gland: progressive acquisition of smooth muscle phenotype.
    Deugnier MA; Moiseyeva EP; Thiery JP; Glukhova M
    Dev Dyn; 1995 Oct; 204(2):107-17. PubMed ID: 8589435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential hormonal regulation and function of progesterone receptor isoforms in normal adult mouse mammary gland.
    Aupperlee MD; Haslam SZ
    Endocrinology; 2007 May; 148(5):2290-300. PubMed ID: 17317767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracellular matrix regulates ovarian hormone-dependent proliferation of mouse mammary epithelial cells.
    Xie J; Haslam SZ
    Endocrinology; 1997 Jun; 138(6):2466-73. PubMed ID: 9165037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental and hormonal signals dramatically alter the localization and abundance of insulin receptor substrate proteins in the mammary gland.
    Lee AV; Zhang P; Ivanova M; Bonnette S; Oesterreich S; Rosen JM; Grimm S; Hovey RC; Vonderhaar BK; Kahn CR; Torres D; George J; Mohsin S; Allred DC; Hadsell DL
    Endocrinology; 2003 Jun; 144(6):2683-94. PubMed ID: 12746333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Progesterone regulation of a pregnancy-specific transcription repressor to beta-casein gene promoter in mouse mammary gland.
    Lee CS; Oka T
    Endocrinology; 1992 Nov; 131(5):2257-62. PubMed ID: 1425425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptional regulation of vascular endothelial growth factor expression in epithelial and stromal cells during mouse mammary gland development.
    Hovey RC; Goldhar AS; Baffi J; Vonderhaar BK
    Mol Endocrinol; 2001 May; 15(5):819-31. PubMed ID: 11328861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution of myoepithelial cells and basement membrane proteins in the resting, pregnant, lactating, and involuting rat mammary gland.
    Warburton MJ; Mitchell D; Ormerod EJ; Rudland P
    J Histochem Cytochem; 1982 Jul; 30(7):667-76. PubMed ID: 6179984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiation-induced transforming growth factor beta and subsequent extracellular matrix reorganization in murine mammary gland.
    Barcellos-Hoff MH
    Cancer Res; 1993 Sep; 53(17):3880-6. PubMed ID: 8358713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mammary ECM composition and function are altered by reproductive state.
    Schedin P; Mitrenga T; McDaniel S; Kaeck M
    Mol Carcinog; 2004 Dec; 41(4):207-20. PubMed ID: 15468292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Progesterone action in normal mouse mammary gland.
    Wang S; Counterman LJ; Haslam SZ
    Endocrinology; 1990 Nov; 127(5):2183-9. PubMed ID: 2226309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mammary localization and abundance of laminin, fibronectin, and collagen IV proteins in prepubertal heifers.
    Berry SD; Howard RD; Akers RM
    J Dairy Sci; 2003 Sep; 86(9):2864-74. PubMed ID: 14507022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Progesterone receptor isoforms and proliferation in the rat mammary gland during development.
    Kariagina A; Aupperlee MD; Haslam SZ
    Endocrinology; 2007 Jun; 148(6):2723-36. PubMed ID: 17332059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fibulin-2 is involved in early extracellular matrix development of the outgrowing mouse mammary epithelium.
    Olijnyk D; Ibrahim AM; Ferrier RK; Tsuda T; Chu ML; Gusterson BA; Stein T; Morris JS
    Cell Mol Life Sci; 2014 Oct; 71(19):3811-28. PubMed ID: 24522256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proliferation of mouse mammary epithelial cells in vitro: interactions among epidermal growth factor, insulin-like growth factor I, ovarian hormones, and extracellular matrix proteins.
    Woodward TL; Xie J; Fendrick JL; Haslam SZ
    Endocrinology; 2000 Oct; 141(10):3578-86. PubMed ID: 11014211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.