These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
438 related articles for article (PubMed ID: 11416134)
1. Redistribution of glycolipid raft domain components induces insulin-mimetic signaling in rat adipocytes. Müller G; Jung C; Wied S; Welte S; Jordan H; Frick W Mol Cell Biol; 2001 Jul; 21(14):4553-67. PubMed ID: 11416134 [TBL] [Abstract][Full Text] [Related]
2. Insulin-mimetic signaling by the sulfonylurea glimepiride and phosphoinositolglycans involves distinct mechanisms for redistribution of lipid raft components. Müller G; Jung C; Wied S; Welte S; Frick W Biochemistry; 2001 Dec; 40(48):14603-20. PubMed ID: 11724574 [TBL] [Abstract][Full Text] [Related]
3. Cholesterol depletion blocks redistribution of lipid raft components and insulin-mimetic signaling by glimepiride and phosphoinositolglycans in rat adipocytes. Müller G; Hanekop N; Wied S; Frick W Mol Med; 2002 Mar; 8(3):120-36. PubMed ID: 12142544 [TBL] [Abstract][Full Text] [Related]
4. Cross talk of pp125(FAK) and pp59(Lyn) non-receptor tyrosine kinases to insulin-mimetic signaling in adipocytes. Müller G; Wied S; Frick W Mol Cell Biol; 2000 Jul; 20(13):4708-23. PubMed ID: 10848597 [TBL] [Abstract][Full Text] [Related]
5. Interaction of phosphatidylinositolglycan(-peptides) with plasma membrane lipid rafts triggers insulin-mimetic signaling in rat adipocytes. Müller G; Jung C; Frick W; Bandlow W; Kramer W Arch Biochem Biophys; 2002 Dec; 408(1):7-16. PubMed ID: 12485598 [TBL] [Abstract][Full Text] [Related]
6. Convergence and divergence of the signaling pathways for insulin and phosphoinositolglycans. Müller G; Wied S; Piossek C; Bauer A; Bauer J; Frick W Mol Med; 1998 May; 4(5):299-323. PubMed ID: 9642681 [TBL] [Abstract][Full Text] [Related]
7. Regulation of lipid raft proteins by glimepiride- and insulin-induced glycosylphosphatidylinositol-specific phospholipase C in rat adipocytes. Müller G; Schulz A; Wied S; Frick W Biochem Pharmacol; 2005 Mar; 69(5):761-80. PubMed ID: 15710354 [TBL] [Abstract][Full Text] [Related]
8. Signalling via caveolin: involvement in the cross-talk between phosphoinositolglycans and insulin. Müller G; Frick W Cell Mol Life Sci; 1999 Dec; 56(11-12):945-70. PubMed ID: 11212327 [TBL] [Abstract][Full Text] [Related]
9. Interaction of phosphoinositolglycan(-peptides) with plasma membrane lipid rafts of rat adipocytes. Müller G; Hanekop N; Kramer W; Bandlow W; Frick W Arch Biochem Biophys; 2002 Dec; 408(1):17-32. PubMed ID: 12485599 [TBL] [Abstract][Full Text] [Related]
10. Insulin-mimetic signalling of synthetic phosphoinositolglycans in isolated rat adipocytes. Frick W; Bauer A; Bauer J; Wied S; Müller G Biochem J; 1998 Nov; 336 ( Pt 1)(Pt 1):163-81. PubMed ID: 9806898 [TBL] [Abstract][Full Text] [Related]
11. Characterization of the molecular mode of action of the sulfonylurea, glimepiride, at adipocytes. Müller G; Geisen K Horm Metab Res; 1996 Sep; 28(9):469-87. PubMed ID: 8911985 [TBL] [Abstract][Full Text] [Related]
12. Src-induced phosphorylation of caveolin-2 on tyrosine 19. Phospho-caveolin-2 (Tyr(P)19) is localized near focal adhesions, remains associated with lipid rafts/caveolae, but no longer forms a high molecular mass hetero-oligomer with caveolin-1. Lee H; Park DS; Wang XB; Scherer PE; Schwartz PE; Lisanti MP J Biol Chem; 2002 Sep; 277(37):34556-67. PubMed ID: 12091389 [TBL] [Abstract][Full Text] [Related]
13. Constitutive and growth factor-regulated phosphorylation of caveolin-1 occurs at the same site (Tyr-14) in vivo: identification of a c-Src/Cav-1/Grb7 signaling cassette. Lee H; Volonte D; Galbiati F; Iyengar P; Lublin DM; Bregman DB; Wilson MT; Campos-Gonzalez R; Bouzahzah B; Pestell RG; Scherer PE; Lisanti MP Mol Endocrinol; 2000 Nov; 14(11):1750-75. PubMed ID: 11075810 [TBL] [Abstract][Full Text] [Related]
15. Caveolin scaffolding region and the membrane binding region of SRC form lateral membrane domains. Wanaski SP; Ng BK; Glaser M Biochemistry; 2003 Jan; 42(1):42-56. PubMed ID: 12515538 [TBL] [Abstract][Full Text] [Related]
16. Palmitoylation of caveolin-1 at a single site (Cys-156) controls its coupling to the c-Src tyrosine kinase: targeting of dually acylated molecules (GPI-linked, transmembrane, or cytoplasmic) to caveolae effectively uncouples c-Src and caveolin-1 (TYR-14). Lee H; Woodman SE; Engelman JA; Volonté D; Galbiati F; Kaufman HL; Lublin DM; Lisanti MP J Biol Chem; 2001 Sep; 276(37):35150-8. PubMed ID: 11451957 [TBL] [Abstract][Full Text] [Related]
17. Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities. Couet J; Sargiacomo M; Lisanti MP J Biol Chem; 1997 Nov; 272(48):30429-38. PubMed ID: 9374534 [TBL] [Abstract][Full Text] [Related]
18. Signal transducing molecules and glycosyl-phosphatidylinositol-linked proteins form a caveolin-rich insoluble complex in MDCK cells. Sargiacomo M; Sudol M; Tang Z; Lisanti MP J Cell Biol; 1993 Aug; 122(4):789-807. PubMed ID: 8349730 [TBL] [Abstract][Full Text] [Related]
19. Insulin stimulates the tyrosine phosphorylation of caveolin. Mastick CC; Brady MJ; Saltiel AR J Cell Biol; 1995 Jun; 129(6):1523-31. PubMed ID: 7540611 [TBL] [Abstract][Full Text] [Related]
20. Short-term leptin-dependent inhibition of hepatic gluconeogenesis is mediated by insulin receptor substrate-2. Anderwald C; Müller G; Koca G; Fürnsinn C; Waldhäusl W; Roden M Mol Endocrinol; 2002 Jul; 16(7):1612-28. PubMed ID: 12089355 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]