These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 11416858)
1. Apatite nucleation on silica surface: a zeta potential approach. Coreño J; Martínez A; Bolarín A; Sánchez F J Biomed Mater Res; 2001 Oct; 57(1):119-25. PubMed ID: 11416858 [TBL] [Abstract][Full Text] [Related]
2. Apatite growth on calcium adsorbed surface of wet flocculated silica particles immersed in a modified simulated body fluid. Coreño J; Rivera E; Castaño V; Rodríguez R J Biomed Mater Res; 2000; 53(1):44-50. PubMed ID: 10634951 [TBL] [Abstract][Full Text] [Related]
3. Calcium and phosphate adsorption as initial steps of apatite nucleation on sol-gel-prepared titania surface. Coreño J; Martínez A; Coreño O; Bolarín A; Sánchez F J Biomed Mater Res A; 2003 Jan; 64(1):131-7. PubMed ID: 12483705 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of calcium titanate as apatite growth promoter. Coreño J; Coreño O J Biomed Mater Res A; 2005 Nov; 75(2):478-84. PubMed ID: 16088899 [TBL] [Abstract][Full Text] [Related]
5. Effect of calcium salt content in the poly(epsilon-caprolactone)/silica nanocomposite on the nucleation and growth behavior of apatite layer. Rhee SH J Biomed Mater Res A; 2003 Dec; 67(4):1131-8. PubMed ID: 14624498 [TBL] [Abstract][Full Text] [Related]
6. Apatite formation on silica gel in simulated body fluid: its dependence on structures of silica gels prepared in different media. Cho SB; Nakanishi K; Kokubo T; Soga N; Ohtsuki C; Nakamura T J Biomed Mater Res; 1996; 33(3):145-51. PubMed ID: 8864886 [TBL] [Abstract][Full Text] [Related]
7. In vitro apatite forming ability of type I collagen hydrogels containing bioactive glass and silica sol-gel particles. Eglin D; Maalheem S; Livage J; Coradin T J Mater Sci Mater Med; 2006 Feb; 17(2):161-7. PubMed ID: 16502249 [TBL] [Abstract][Full Text] [Related]
8. Effects of ions in aqueous media on hydroxyapatite induction by silica gel and its relevance to bioactivity of bioactive glasses and glass-ceramics. Li P; Ohtsuki C; Kokubo T; Nakanishi K; Soga N; Nakamura T; Yamamuro T J Appl Biomater; 1993; 4(3):221-9. PubMed ID: 10146306 [TBL] [Abstract][Full Text] [Related]
9. The effect of surface silanol groups on the deposition of apatite onto silica surfaces: a computer simulation study. Mkhonto D; de Leeuw NH J Mater Sci Mater Med; 2008 Jan; 19(1):203-16. PubMed ID: 17597358 [TBL] [Abstract][Full Text] [Related]
10. Chemistry of aqueous silica nanoparticle surfaces and the mechanism of selective peptide adsorption. Patwardhan SV; Emami FS; Berry RJ; Jones SE; Naik RR; Deschaume O; Heinz H; Perry CC J Am Chem Soc; 2012 Apr; 134(14):6244-56. PubMed ID: 22435500 [TBL] [Abstract][Full Text] [Related]
11. Characterization of titanium surfaces with calcium and phosphate and osteoblast adhesion. Feng B; Weng J; Yang BC; Qu SX; Zhang XD Biomaterials; 2004 Aug; 25(17):3421-8. PubMed ID: 15020115 [TBL] [Abstract][Full Text] [Related]
12. In vivo calcium phosphate formation induced by sol-gel-prepared silica. Li P; Ye X; Kangasniemi I; de Blieck-Hogervorst JM; Klein CP; de Groot K J Biomed Mater Res; 1995 Mar; 29(3):325-8. PubMed ID: 7615584 [TBL] [Abstract][Full Text] [Related]
13. Surface modification of P(EMA-co-HEA)/SiO2 nanohybrids for faster hydroxyapatite deposition in simulated body fluid? Vallés Lluch A; Ferrer GG; Pradas MM Colloids Surf B Biointerfaces; 2009 May; 70(2):218-25. PubMed ID: 19185471 [TBL] [Abstract][Full Text] [Related]
14. Apatite formation on poly(2-hydroxyethyl methacrylate)-silica hybrids prepared by sol-gel process. Costa RO; Pereira MM; Lameiras FS; Vasconcelos WL J Mater Sci Mater Med; 2005 Oct; 16(10):927-32. PubMed ID: 16167101 [TBL] [Abstract][Full Text] [Related]
15. Effects of pH value and calcium hardness on the removal of 1,1,1-trichloroethane by immobilized nanoscale zero-valent iron on silica based supports. Chen S; Belver C; Li H; Ren LY; Liu YD; Bedia J; Gao GL; Guan J Chemosphere; 2018 Nov; 211():102-111. PubMed ID: 30071421 [TBL] [Abstract][Full Text] [Related]
16. Development of novel delivery system for warfarin based on mesoporous silica: adsorption characteristics of silica materials for the anticoagulant. Dolinina ES; Vorobyeva EV; Parfenyuk EV Pharm Dev Technol; 2016 Aug; 21(5):546-53. PubMed ID: 26465269 [TBL] [Abstract][Full Text] [Related]
17. Apatite formation on PDMS-modified CaO-SiO2-TiO2 hybrids prepared by sol-gel process. Chen Q; Miyaji F; Kokubo T; Nakamura T Biomaterials; 1999 Jun; 20(12):1127-32. PubMed ID: 10382828 [TBL] [Abstract][Full Text] [Related]
18. In vitro bioactivity and degradation behavior of silica xerogels intended as controlled release materials. Radin S; Falaize S; Lee MH; Ducheyne P Biomaterials; 2002 Aug; 23(15):3113-22. PubMed ID: 12102182 [TBL] [Abstract][Full Text] [Related]
19. Petal-like apatite formed on the surface of tricalcium phosphate ceramic after soaking in distilled water. Lin FH; Liao CJ; Chen KS; Su JS; Lin CP Biomaterials; 2001 Nov; 22(22):2981-92. PubMed ID: 11575472 [TBL] [Abstract][Full Text] [Related]
20. Apatite-forming ability of silicate ion dissolved from silica gels. Cho SB; Miyaji F; Kokubo T; Nakanishi K; Soga N; Nakamura T J Biomed Mater Res; 1996 Nov; 32(3):375-81. PubMed ID: 8897142 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]