BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 11417122)

  • 1. Staphylococcal pore-forming toxins.
    Prévost G; Mourey L; Colin DA; Menestrina G
    Curr Top Microbiol Immunol; 2001; 257():53-83. PubMed ID: 11417122
    [No Abstract]   [Full Text] [Related]  

  • 2. Crystal structure of leucotoxin S component: new insight into the Staphylococcal beta-barrel pore-forming toxins.
    Guillet V; Roblin P; Werner S; Coraiola M; Menestrina G; Monteil H; Prévost G; Mourey L
    J Biol Chem; 2004 Sep; 279(39):41028-37. PubMed ID: 15262988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Staphylococcal alpha-toxin, streptolysin-O, and Escherichia coli hemolysin: prototypes of pore-forming bacterial cytolysins.
    Bhakdi S; Bayley H; Valeva A; Walev I; Walker B; Kehoe M; Palmer M
    Arch Microbiol; 1996 Feb; 165(2):73-9. PubMed ID: 8593102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore.
    Song L; Hobaugh MR; Shustak C; Cheley S; Bayley H; Gouaux JE
    Science; 1996 Dec; 274(5294):1859-66. PubMed ID: 8943190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The structure of a Staphylococcus aureus leucocidin component (LukF-PV) reveals the fold of the water-soluble species of a family of transmembrane pore-forming toxins.
    Pédelacq JD; Maveyraud L; Prévost G; Baba-Moussa L; González A; Courcelle E; Shepard W; Monteil H; Samama JP; Mourey L
    Structure; 1999 Mar; 7(3):277-87. PubMed ID: 10368297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aerolysin--a paradigm for membrane insertion of beta-sheet protein toxins?
    Rossjohn J; Feil SC; McKinstry WJ; Tsernoglou D; van der Goot G; Buckley JT; Parker MW
    J Struct Biol; 1998; 121(2):92-100. PubMed ID: 9615432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intermolecular ionic interactions serve as a possible switch for stem release in the staphylococcal bi-component toxin for β-barrel pore assembly.
    Takeda K; Tanaka Y; Abe N; Kaneko J
    Toxicon; 2018 Dec; 155():43-48. PubMed ID: 30312693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tumor protease-activated, pore-forming toxins from a combinatorial library.
    Panchal RG; Cusack E; Cheley S; Bayley H
    Nat Biotechnol; 1996 Jul; 14(7):852-6. PubMed ID: 9631009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aerolysin from Aeromonas hydrophila and related toxins.
    Fivaz M; Abrami L; Tsitrin Y; van der Goot FG
    Curr Top Microbiol Immunol; 2001; 257():35-52. PubMed ID: 11417121
    [No Abstract]   [Full Text] [Related]  

  • 10. Cluster-forming property correlated with hemolytic activity by staphylococcal γ-hemolysin transmembrane pores.
    Tomita N; Abe K; Kamio Y; Ohta M
    FEBS Lett; 2011 Nov; 585(21):3452-6. PubMed ID: 22001207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Molecular mechanisms of cytotoxic effect of alpha-toxin of Staphylococcus aureus].
    Khaziev AF; Mikhaĭlova NA
    Zh Mikrobiol Epidemiol Immunobiol; 2007; (1):77-83. PubMed ID: 17523438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assembly of Staphylococcus aureus gamma-hemolysin into a pore-forming ring-shaped complex on the surface of human erythrocytes.
    Sugawara N; Tomita T; Kamio Y
    FEBS Lett; 1997 Jun; 410(2-3):333-7. PubMed ID: 9237657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Key residues for membrane binding, oligomerization, and pore forming activity of staphylococcal alpha-hemolysin identified by cysteine scanning mutagenesis and targeted chemical modification.
    Walker B; Bayley H
    J Biol Chem; 1995 Sep; 270(39):23065-71. PubMed ID: 7559447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The interaction between RTX toxins and target cells.
    Lally ET; Hill RB; Kieba IR; Korostoff J
    Trends Microbiol; 1999 Sep; 7(9):356-61. PubMed ID: 10470043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction with a lipid membrane: a key step in bacterial toxins virulence.
    Cabiaux V; Wolff C; Ruysschaert JM
    Int J Biol Macromol; 1997 Dec; 21(4):285-98. PubMed ID: 9493052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineered covalent leucotoxin heterodimers form functional pores: insights into S-F interactions.
    Joubert O; Viero G; Keller D; Martinez E; Colin DA; Monteil H; Mourey L; Dalla Serra M; Prévost G
    Biochem J; 2006 Jun; 396(2):381-9. PubMed ID: 16494579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mode of action of beta-barrel pore-forming toxins of the staphylococcal alpha-hemolysin family.
    Menestrina G; Serra MD; Prévost G
    Toxicon; 2001 Nov; 39(11):1661-72. PubMed ID: 11595629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyt1Aa toxin: crystal structure reveals implications for its membrane-perforating function.
    Cohen S; Albeck S; Ben-Dov E; Cahan R; Firer M; Zaritsky A; Dym O
    J Mol Biol; 2011 Nov; 413(4):804-14. PubMed ID: 21959261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of membrane lipids in Staphylococcus aureus gamma-hemolysins pore formation.
    Potrich C; Bastiani H; Colin DA; Huck S; Prévost G; Dalla Serra M
    J Membr Biol; 2009 Jan; 227(1):13-24. PubMed ID: 19067025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The insecticidal crystal protein Cry2Ab10 from Bacillus thuringiensis: cloning, expression, and structure simulation.
    Lin Y; Fang G; Cai F
    Biotechnol Lett; 2008 Mar; 30(3):513-9. PubMed ID: 17973088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.