BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 11417226)

  • 1. The C-terminal part of the R-domain, but not the PDZ binding motif, of CFTR is involved in interaction with Ca(2+)-activated Cl- channels.
    Wei L; Vankeerberghen A; Cuppens H; Cassiman JJ; Droogmans G; Nilius B
    Pflugers Arch; 2001 May; 442(2):280-5. PubMed ID: 11417226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction between calcium-activated chloride channels and the cystic fibrosis transmembrane conductance regulator.
    Wei L; Vankeerberghen A; Cuppens H; Eggermont J; Cassiman JJ; Droogmans G; Nilius B
    Pflugers Arch; 1999 Oct; 438(5):635-41. PubMed ID: 10555560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chlorotoxin does not inhibit volume-regulated, calcium-activated and cyclic AMP-activated chloride channels.
    Maertens C; Wei L; Tytgat J; Droogmans G; Nilius B
    Br J Pharmacol; 2000 Feb; 129(4):791-801. PubMed ID: 10683204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cystic fibrosis transmembrane conductance regulator attenuates the endogenous Ca2+ activated Cl- conductance of Xenopus oocytes.
    Kunzelmann K; Mall M; Briel M; Hipper A; Nitschke R; Ricken S; Greger R
    Pflugers Arch; 1997 Dec; 435(1):178-81. PubMed ID: 9359918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple types of chloride channels in bovine pulmonary artery endothelial cells.
    Nilius B; Szücs G; Heinke S; Voets T; Droogmans G
    J Vasc Res; 1997; 34(3):220-8. PubMed ID: 9226304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of volume-regulated anion channels by expression of the cystic fibrosis transmembrane conductance regulator.
    Vennekens R; Trouet D; Vankeerberghen A; Voets T; Cuppens H; Eggermont J; Cassiman JJ; Droogmans G; Nilius B
    J Physiol; 1999 Feb; 515 ( Pt 1)(Pt 1):75-85. PubMed ID: 9925879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CFTR and TMEM16A are separate but functionally related Cl- channels.
    Ousingsawat J; Kongsuphol P; Schreiber R; Kunzelmann K
    Cell Physiol Biochem; 2011; 28(4):715-24. PubMed ID: 22178883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional characterization of the CFTR R domain using CFTR/MDR1 hybrid and deletion constructs.
    Vankeerberghen A; Lin W; Jaspers M; Cuppens H; Nilius B; Cassiman JJ
    Biochemistry; 1999 Nov; 38(45):14988-98. PubMed ID: 10555981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chloride channel and chloride conductance regulator domains of CFTR, the cystic fibrosis transmembrane conductance regulator.
    Schwiebert EM; Morales MM; Devidas S; Egan ME; Guggino WB
    Proc Natl Acad Sci U S A; 1998 Mar; 95(5):2674-9. PubMed ID: 9482946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of CFTR's PDZ1-binding domain, NBF1 and Cl(-) conductance in inhibition of epithelial Na(+) channels in Xenopus oocytes.
    Boucherot A; Schreiber R; Kunzelmann K
    Biochim Biophys Acta; 2001 Nov; 1515(1):64-71. PubMed ID: 11597353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clusters of Cl- channels in CFTR-expressing Sf9 cells switch spontaneously between slow and fast gating modes.
    Larsen EH; Price EM; Gabriel SE; Stutts MJ; Boucher RC
    Pflugers Arch; 1996 Jul; 432(3):528-37. PubMed ID: 8766014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antiestrogen- and tamoxifen-induced effects on calcium-activated chloride currents in epithelial cells carrying the ∆F508-CFTR point mutation.
    Imberti R; Garavaglia ML; Verduci I; Cannavale G; Balduzzi G; Papetti S; Mazzanti M
    Respir Res; 2018 Oct; 19(1):198. PubMed ID: 30290809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium-activated chloride channels in bovine pulmonary artery endothelial cells.
    Nilius B; Prenen J; Szücs G; Wei L; Tanzi F; Voets T; Droogmans G
    J Physiol; 1997 Jan; 498 ( Pt 2)(Pt 2):381-96. PubMed ID: 9032686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mouse cystic fibrosis transmembrane conductance regulator forms cAMP-PKA-regulated apical chloride channels in cortical collecting duct.
    Lu M; Dong K; Egan ME; Giebisch GH; Boulpaep EL; Hebert SC
    Proc Natl Acad Sci U S A; 2010 Mar; 107(13):6082-7. PubMed ID: 20231442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of recombinant cardiac cystic fibrosis transmembrane conductance regulator chloride channels by protein kinase C.
    Yamazaki J; Britton F; Collier ML; Horowitz B; Hume JR
    Biophys J; 1999 Apr; 76(4):1972-87. PubMed ID: 10096895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Down-regulation of volume-sensitive Cl- channels by CFTR is mediated by the second nucleotide-binding domain.
    Ando-Akatsuka Y; Abdullaev IF; Lee EL; Okada Y; Sabirov RZ
    Pflugers Arch; 2002 Nov; 445(2):177-86. PubMed ID: 12457238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CFTR chloride channels in human and simian heart.
    Warth JD; Collier ML; Hart P; Geary Y; Gelband CH; Chapman T; Horowitz B; Hume JR
    Cardiovasc Res; 1996 Apr; 31(4):615-24. PubMed ID: 8689654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of apical CFTR and basolateral Ca(2+)-activated K+ channels by tetramethylpyrazine in Caco-2 cell line.
    Zhu JX; Zhang GH; Yang N; Rowlands DK; Wong HY; Tsang LL; Chung YW; Chan HC
    Eur J Pharmacol; 2005 Mar; 510(3):187-95. PubMed ID: 15763242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of ATP-sensitive K+ channel regulators on cystic fibrosis transmembrane conductance regulator chloride currents.
    Sheppard DN; Welsh MJ
    J Gen Physiol; 1992 Oct; 100(4):573-91. PubMed ID: 1281220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of cystic fibrosis transmembrane conductance regulator alters the responses to hypotonic cell swelling and ATP of Chinese hamster ovary cells.
    Thiele IE; Hug MJ; Hübner M; Greger R
    Cell Physiol Biochem; 1998; 8(1-2):61-74. PubMed ID: 9547020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.