These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 11417678)

  • 1. A study of gas-phase mercury speciation using detailed chemical kinetics.
    Edwards JR; Srivastava RK; Kilgroe JD
    J Air Waste Manag Assoc; 2001 Jun; 51(6):869-77. PubMed ID: 11417678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LP/LIF study of the formation and consumption of mercury (I) chloride: kinetics of mercury chlorination.
    Taylor PH; Mallipeddi R; Yamada T
    Chemosphere; 2005 Nov; 61(5):685-92. PubMed ID: 15893790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a mercury transformation model in coal combustion flue gas.
    Zhuang Y; Thompson JS; Zygarlicke CJ; Pavlish JH
    Environ Sci Technol; 2004 Nov; 38(21):5803-8. PubMed ID: 15575303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting extents of mercury oxidation in coal-derived flue gases.
    Niksa S; Fujiwara N
    J Air Waste Manag Assoc; 2005 Jul; 55(7):930-9. PubMed ID: 16111132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Issues related to solution chemistry in mercury sampling impingers.
    Linak WP; Ryan JV; Ghorishi BS; Wendt JO
    J Air Waste Manag Assoc; 2001 May; 51(5):688-98. PubMed ID: 11355456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Possibilities of mercury removal in the dry flue gas cleaning lines of solid waste incineration units.
    Svoboda K; Hartman M; Šyc M; Pohořelý M; Kameníková P; Jeremiáš M; Durda T
    J Environ Manage; 2016 Jan; 166():499-511. PubMed ID: 26588812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface compositions of carbon sorbents exposed to simulated low-rank coal flue gases.
    Olson ES; Crocker CR; Benson SA; Pavlish JH; Holmes MJ
    J Air Waste Manag Assoc; 2005 Jun; 55(6):747-54. PubMed ID: 16022412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding mercury transformations in coal-fired power plants: evaluation of homogeneous Hg oxidation mechanisms.
    Krishnakumar B; Helble JJ
    Environ Sci Technol; 2007 Nov; 41(22):7870-5. PubMed ID: 18075101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bromine chloride as an oxidant to improve elemental mercury removal from coal-fired flue gas.
    Qu Z; Yan N; Liu P; Chi Y; Jia J
    Environ Sci Technol; 2009 Nov; 43(22):8610-5. PubMed ID: 20028060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic modeling of homogeneous mercury oxidation: the importance of NO and H2O in predicting oxidation in coal-derived systems.
    Niksa S; Helble JJ; Fujiwara N
    Environ Sci Technol; 2001 Sep; 35(18):3701-6. PubMed ID: 11783648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pilot-scale study of the effect of selective catalytic reduction catalyst on mercury speciation in Illinois and Powder River Basin coal combustion flue gases.
    Lee CW; Srivastava RK; Ghorishi SB; Karwowski J; Hastings TW; Hirschi JC
    J Air Waste Manag Assoc; 2006 May; 56(5):643-9. PubMed ID: 16739801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of NOx control processes on mercury speciation in utility flue gas.
    Richardson C; Machalek T; Miller S; Dene C; Chang R
    J Air Waste Manag Assoc; 2002 Aug; 52(8):941-7. PubMed ID: 12184693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of iodine monochloride for the oxidation of elemental mercury.
    Qu Z; Yan N; Liu P; Jia J; Yang S
    J Hazard Mater; 2010 Nov; 183(1-3):132-7. PubMed ID: 20674159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hg reactions in the presence of chlorine species: homogeneous gas phase and heterogeneous gas-solid phase.
    Lee TG; Hedrick E; Biswas P
    J Air Waste Manag Assoc; 2002 Nov; 52(11):1316-23. PubMed ID: 12469718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copper slag as a catalyst for mercury oxidation in coal combustion flue gas.
    Li H; Zhang W; Wang J; Yang Z; Li L; Shih K
    Waste Manag; 2018 Apr; 74():253-259. PubMed ID: 29229180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insight into the unique oxidation chemistry of elemental mercury by chlorine-containing species: experiment and simulation.
    Byun Y; Cho M; Namkung W; Lee K; Koh DJ; Shin DN
    Environ Sci Technol; 2010 Mar; 44(5):1624-9. PubMed ID: 20131790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The fate and behavior of mercury in coal-fired power plants.
    Meij R; Vredenbregt LH; te Winkel H
    J Air Waste Manag Assoc; 2002 Aug; 52(8):912-7. PubMed ID: 12184689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using bromine gas to enhance mercury removal from flue gas of coal-fired power plants.
    Liu SH; Yan NQ; Liu ZR; Qu Z; Wang HP; Chang SG; Miller C
    Environ Sci Technol; 2007 Feb; 41(4):1405-12. PubMed ID: 17593749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Confounding effects of aqueous-phase impinger chemistry on apparent oxidation of mercury in flue gases.
    Cauch B; Silcox GD; Lighty JS; Wendt JO; Fry A; Senior CL
    Environ Sci Technol; 2008 Apr; 42(7):2594-9. PubMed ID: 18505002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of HCl on oxidation of gaseous elemental mercury by dielectric barrier discharge process.
    Ko KB; Byun Y; Cho M; Namkung W; Shin DN; Koh DJ; Kim KT
    Chemosphere; 2008 Apr; 71(9):1674-82. PubMed ID: 18313101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.