These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 11417680)

  • 21. Combustion characteristics of simulated gas fuel in a 30 kg/h scale pyrolysis-melting incinerator.
    Shin D; Yu T; Yang W; Jeon B; Park S; Hwang J
    Waste Manag; 2008 Nov; 28(11):2422-7. PubMed ID: 18325753
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Co-combustion of shredder residues and municipal solid waste in a Swedish municipal solid waste incinerator.
    Redin LA; Hjelt M; Marklund S
    Waste Manag Res; 2001 Dec; 19(6):518-25. PubMed ID: 12201681
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Numerical study of radiation effect on the municipal solid waste combustion characteristics inside an incinerator.
    Wang J; Xue Y; Zhang X; Shu X
    Waste Manag; 2015 Oct; 44():116-24. PubMed ID: 26233882
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Co-firing of paper sludge with high-calorific industrial wastes in a pilot-scale nozzle-grate incinerator.
    Lee GW; Lee SJ; Jurng J; Hwang J
    J Hazard Mater; 2003 Aug; 101(3):273-83. PubMed ID: 12935759
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Emissions investigation for a novel medical waste incinerator.
    Xie R; Li WJ; Li J; Wu BL; Yi JQ
    J Hazard Mater; 2009 Jul; 166(1):365-71. PubMed ID: 19111396
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A study on toxic organic emissions from batch combustion of styrene.
    Westblad C; Levendis YA; Richter H; Howard JB; Carlson J
    Chemosphere; 2002 Oct; 49(4):395-412. PubMed ID: 12365837
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Emissions study of co-firing waste carpet in a rotary kiln.
    Lemieux P; Stewart E; Realff M; Mulholland JA
    J Environ Manage; 2004 Jan; 70(1):27-33. PubMed ID: 15125542
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Waste burning and heat recovery characteristics of a mass burn incineration system.
    Chen WH
    J Air Waste Manag Assoc; 2003 Feb; 53(2):136-42. PubMed ID: 12617288
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Converting moving-grate incineration from combustion to gasification - numerical simulation of the burning characteristics.
    Yang YB; Sharifi VN; Swithenbank J
    Waste Manag; 2007; 27(5):645-55. PubMed ID: 16730435
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improvement of operating conditions in waste incinerators using engineering tools.
    Yang W; Nam HS; Choi S
    Waste Manag; 2007; 27(5):604-13. PubMed ID: 17258445
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Incineration of paper sludge in a prototype vortexing fluidized bed combustor.
    Chyang CS; Liu CY; Chang YD
    J Air Waste Manag Assoc; 2001 Apr; 51(4):542-51. PubMed ID: 11321911
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermal treatment of medical waste in a rotary kiln.
    Bujak J
    J Environ Manage; 2015 Oct; 162():139-47. PubMed ID: 26241929
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A life-cycle inventory model of municipal solid waste combustion.
    Harrison KW; Dumas RD; Barlaz MA; Nishtala SR
    J Air Waste Manag Assoc; 2000 Jun; 50(6):993-1003. PubMed ID: 10902393
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A two-fluid model simulation of an industrial moving grate waste incinerator.
    Xia Z; Shan P; Chen C; Du H; Huang J; Bai L
    Waste Manag; 2020 Mar; 104():183-191. PubMed ID: 31981819
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simulation of the flue gas cleaning system of an RDF incineration power plant.
    Jannelli E; Minutillo M
    Waste Manag; 2007; 27(5):684-90. PubMed ID: 16750619
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental research on emission and removal of dioxins in flue gas from a co-combustion of MSW and coal incinerator.
    Zhong Z; Jin B; Huang Y; Zhou H; Lan J
    Waste Manag; 2006; 26(6):580-6. PubMed ID: 16054809
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mathematical modeling of MSW combustion and SNCR in a full-scale municipal incinerator and effects of grate speed and oxygen-enriched atmospheres on operating conditions.
    Liang Z; Ma X
    Waste Manag; 2010 Dec; 30(12):2520-9. PubMed ID: 20627508
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PCDD/PCDF reduction by the co-combustion process.
    Lee VK; Cheung WH; McKay G
    Chemosphere; 2008 Jan; 70(4):682-8. PubMed ID: 17706744
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A full-scale study on thermal degradation of polychlorinated dibenzo- p-dioxins and dibenzofurans in municipal solid waste incinerator fly ash and its secondary air pollution control in China.
    Gao X; Ji B; Yan D; Huang Q; Zhu X
    Waste Manag Res; 2017 Apr; 35(4):437-443. PubMed ID: 27909210
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Technology of waste incineration].
    Thömen KH
    Zentralbl Bakteriol Mikrobiol Hyg B; 1983 Sep; 178(1-2):174-85. PubMed ID: 6649993
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.