BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 11418345)

  • 1. Molecular basis of plant growth promotion and biocontrol by rhizobacteria.
    Bloemberg GV; Lugtenberg BJ
    Curr Opin Plant Biol; 2001 Aug; 4(4):343-50. PubMed ID: 11418345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of actinobacteria on plant disease suppression and growth promotion.
    Palaniyandi SA; Yang SH; Zhang L; Suh JW
    Appl Microbiol Biotechnol; 2013 Nov; 97(22):9621-36. PubMed ID: 24092003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of potential biocontrol rhizobacteria from different host plants of Verticillium dahliae Kleb.
    Berg G; Fritze A; Roskot N; Smalla K
    J Appl Microbiol; 2001 Dec; 91(6):963-71. PubMed ID: 11851803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trichoderma for climate resilient agriculture.
    Kashyap PL; Rai P; Srivastava AK; Kumar S
    World J Microbiol Biotechnol; 2017 Aug; 33(8):155. PubMed ID: 28695465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Friend or foe? Exploring the fine line between
    Gislason AS; de Kievit TR
    J Med Microbiol; 2020 Mar; 69(3):347-360. PubMed ID: 31976855
    [No Abstract]   [Full Text] [Related]  

  • 6. PGPR-mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: Current perspectives.
    Meena M; Swapnil P; Divyanshu K; Kumar S; Harish ; Tripathi YN; Zehra A; Marwal A; Upadhyay RS
    J Basic Microbiol; 2020 Oct; 60(10):828-861. PubMed ID: 32815221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbe-plant interactions: principles and mechanisms.
    Lugtenberg BJ; Chin-A-Woeng TF; Bloemberg GV
    Antonie Van Leeuwenhoek; 2002 Aug; 81(1-4):373-83. PubMed ID: 12448736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bio-organic fertilizers stimulate indigenous soil Pseudomonas populations to enhance plant disease suppression.
    Tao C; Li R; Xiong W; Shen Z; Liu S; Wang B; Ruan Y; Geisen S; Shen Q; Kowalchuk GA
    Microbiome; 2020 Sep; 8(1):137. PubMed ID: 32962766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological control of soil-borne pathogens by fluorescent pseudomonads.
    Haas D; Défago G
    Nat Rev Microbiol; 2005 Apr; 3(4):307-19. PubMed ID: 15759041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture.
    Gouda S; Kerry RG; Das G; Paramithiotis S; Shin HS; Patra JK
    Microbiol Res; 2018 Jan; 206():131-140. PubMed ID: 29146250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the genome sequence of plant beneficial strain Pseudomonas sp. RU47.
    Kuzmanović N; Eltlbany N; Ding G; Baklawa M; Min L; Wei L; Smalla K
    J Biotechnol; 2018 Sep; 281():183-192. PubMed ID: 30031092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unearthing the genomes of plant-beneficial Pseudomonas model strains WCS358, WCS374 and WCS417.
    Berendsen RL; van Verk MC; Stringlis IA; Zamioudis C; Tommassen J; Pieterse CM; Bakker PA
    BMC Genomics; 2015 Jul; 16(1):539. PubMed ID: 26198432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular-based strategies to exploit Pseudomonas biocontrol strains for environmental biotechnology applications.
    Mark G; Morrissey JP; Higgins P; O'gara F
    FEMS Microbiol Ecol; 2006 May; 56(2):167-77. PubMed ID: 16629747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant perceptions of plant growth-promoting Pseudomonas.
    Preston GM
    Philos Trans R Soc Lond B Biol Sci; 2004 Jun; 359(1446):907-18. PubMed ID: 15306406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial Products and Biofertilizers in Improving Growth and Productivity of Apple - a Review.
    Mosa WFAE; Sas-Paszt L; Frąc M; Trzciński P
    Pol J Microbiol; 2016 Aug; 65(3):243-251. PubMed ID: 29334068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens.
    Saraf M; Pandya U; Thakkar A
    Microbiol Res; 2014 Jan; 169(1):18-29. PubMed ID: 24176815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revisiting the plant growth-promoting rhizobacteria: lessons from the past and objectives for the future.
    Aeron A; Khare E; Jha CK; Meena VS; Aziz SMA; Islam MT; Kim K; Meena SK; Pattanayak A; Rajashekara H; Dubey RC; Maurya BR; Maheshwari DK; Saraf M; Choudhary M; Verma R; Meena HN; Subbanna ARNS; Parihar M; Shukla S; Muthusamy G; Bana RS; Bajpai VK; Han YK; Rahman M; Kumar D; Singh NP; Meena RK
    Arch Microbiol; 2020 May; 202(4):665-676. PubMed ID: 31781809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects.
    Etesami H; Maheshwari DK
    Ecotoxicol Environ Saf; 2018 Jul; 156():225-246. PubMed ID: 29554608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soil microbes and plant fertilization.
    Miransari M
    Appl Microbiol Biotechnol; 2011 Dec; 92(5):875-85. PubMed ID: 21989562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prospects of endophytic fungal entomopathogens as biocontrol and plant growth promoting agents: An insight on how artificial inoculation methods affect endophytic colonization of host plants.
    Bamisile BS; Dash CK; Akutse KS; Keppanan R; Afolabi OG; Hussain M; Qasim M; Wang L
    Microbiol Res; 2018 Dec; 217():34-50. PubMed ID: 30384907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.