BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 11418553)

  • 1. Sodium ion-driven serine/threonine transport in Porphyromonas gingivalis.
    Dashper SG; Brownfield L; Slakeski N; Zilm PS; Rogers AH; Reynolds EC
    J Bacteriol; 2001 Jul; 183(14):4142-8. PubMed ID: 11418553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preferential dipeptide incorporation of Porphyromonas gingivalis mediated by proton-dependent oligopeptide transporter (Pot).
    Ohara-Nemoto Y; Sarwar MT; Shimoyama Y; Kobayakawa T; Nemoto TK
    FEMS Microbiol Lett; 2020 Jan; 367(24):. PubMed ID: 33338236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel Porphyromonas gingivalis FeoB plays a role in manganese accumulation.
    Dashper SG; Butler CA; Lissel JP; Paolini RA; Hoffmann B; Veith PD; O'Brien-Simpson NM; Snelgrove SL; Tsiros JT; Reynolds EC
    J Biol Chem; 2005 Jul; 280(30):28095-102. PubMed ID: 15901729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization and expression of HmuR, a TonB-dependent hemoglobin receptor of Porphyromonas gingivalis.
    Simpson W; Olczak T; Genco CA
    J Bacteriol; 2000 Oct; 182(20):5737-48. PubMed ID: 11004172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning and expression of the gene for the Na+-coupled serine transporter from Escherichia coli and characteristics of the transporter.
    Ogawa W; Kim YM; Mizushima T; Tsuchiya T
    J Bacteriol; 1998 Dec; 180(24):6749-52. PubMed ID: 9852024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Properties of a Na+-coupled serine-threonine transport system in Escherichia coli.
    Hama H; Shimamoto T; Tsuda M; Tsuchiya T
    Biochim Biophys Acta; 1987 Dec; 905(2):231-9. PubMed ID: 2825778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Porphyromonas gingivalis HmuY and HmuR: further characterization of a novel mechanism of heme utilization.
    Olczak T; Sroka A; Potempa J; Olczak M
    Arch Microbiol; 2008 Mar; 189(3):197-210. PubMed ID: 17922109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sodium-substrate cotransport in bacteria.
    Wilson TH; Ding PZ
    Biochim Biophys Acta; 2001 May; 1505(1):121-30. PubMed ID: 11248194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Response of Porphyromonas gingivalis to heme limitation in continuous culture.
    Dashper SG; Ang CS; Veith PD; Mitchell HL; Lo AW; Seers CA; Walsh KA; Slakeski N; Chen D; Lissel JP; Butler CA; O'Brien-Simpson NM; Barr IG; Reynolds EC
    J Bacteriol; 2009 Feb; 191(3):1044-55. PubMed ID: 19028886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a novel outer membrane hemin-binding protein of Porphyromonas gingivalis.
    Dashper SG; Hendtlass A; Slakeski N; Jackson C; Cross KJ; Brownfield L; Hamilton R; Barr I; Reynolds EC
    J Bacteriol; 2000 Nov; 182(22):6456-62. PubMed ID: 11053391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning and functional characterization of a system ASC-like Na+-dependent neutral amino acid transporter.
    Utsunomiya-Tate N; Endou H; Kanai Y
    J Biol Chem; 1996 Jun; 271(25):14883-90. PubMed ID: 8662767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport of biosynthetic intermediates: homoserine and threonine uptake in Escherichia coli.
    Templeton BA; Savageau MA
    J Bacteriol; 1974 Mar; 117(3):1002-9. PubMed ID: 4591940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sodium-dependent transport of neutral amino acids by whole cells and membrane vesicles of Streptococcus bovis, a ruminal bacterium.
    Russell JB; Strobel HJ; Driessen AJ; Konings WN
    J Bacteriol; 1988 Aug; 170(8):3531-6. PubMed ID: 3136141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning and expression of a novel Na(+)-dependent neutral amino acid transporter structurally related to mammalian Na+/glutamate cotransporters.
    Shafqat S; Tamarappoo BK; Kilberg MS; Puranam RS; McNamara JO; GuadaƱo-Ferraz A; Fremeau RT
    J Biol Chem; 1993 Jul; 268(21):15351-5. PubMed ID: 8340364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemoglobin hydrolysis and heme acquisition by Porphyromonas gingivalis.
    Dashper SG; Cross KJ; Slakeski N; Lissel P; Aulakh P; Moore C; Reynolds EC
    Oral Microbiol Immunol; 2004 Feb; 19(1):50-6. PubMed ID: 14678474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of amino acid transport in membrane vesicles from the thermophilic fermentative bacterium Clostridium fervidus.
    Speelmans G; de Vrij W; Konings WN
    J Bacteriol; 1989 Jul; 171(7):3788-95. PubMed ID: 2567728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and molecular characterization of tryptophanase encoded by tnaA in Porphyromonas gingivalis.
    Yoshida Y; Sasaki T; Ito S; Tamura H; Kunimatsu K; Kato H
    Microbiology (Reading); 2009 Mar; 155(Pt 3):968-978. PubMed ID: 19246767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of truncation of the COOH-terminal region of a Na+-independent neutral and basic amino acid transporter on amino acid transport in Xenopus oocytes.
    Miyamoto K; Segawa H; Tatsumi S; Katai K; Yamamoto H; Taketani Y; Haga H; Morita K; Takeda E
    J Biol Chem; 1996 Jul; 271(28):16758-63. PubMed ID: 8663184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. VimA-dependent modulation of acetyl coenzyme A levels and lipid A biosynthesis can alter virulence in Porphyromonas gingivalis.
    Aruni AW; Lee J; Osbourne D; Dou Y; Roy F; Muthiah A; Boskovic DS; Fletcher HM
    Infect Immun; 2012 Feb; 80(2):550-64. PubMed ID: 22144476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Participation of the secreted dipeptidyl and tripeptidyl aminopeptidases in asaccharolytic growth of Porphyromonas gingivalis.
    Oda H; Saiki K; Tonosaki M; Yajima A; Konishi K
    J Periodontal Res; 2009 Jun; 44(3):362-7. PubMed ID: 19076991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.