BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 11418588)

  • 1. Modulation of the helicase activity of eIF4A by eIF4B, eIF4H, and eIF4F.
    Rogers GW; Richter NJ; Lima WF; Merrick WC
    J Biol Chem; 2001 Aug; 276(33):30914-22. PubMed ID: 11418588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical and kinetic characterization of the RNA helicase activity of eukaryotic initiation factor 4A.
    Rogers GW; Richter NJ; Merrick WC
    J Biol Chem; 1999 Apr; 274(18):12236-44. PubMed ID: 10212190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wheat germ translation initiation factor eIF4B affects eIF4A and eIFiso4F helicase activity by increasing the ATP binding affinity of eIF4A.
    Bi X; Ren J; Goss DJ
    Biochemistry; 2000 May; 39(19):5758-65. PubMed ID: 10801326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Duplex unwinding and ATPase activities of the DEAD-box helicase eIF4A are coupled by eIF4G and eIF4B.
    Özeş AR; Feoktistova K; Avanzino BC; Fraser CS
    J Mol Biol; 2011 Sep; 412(4):674-87. PubMed ID: 21840318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. eIF4B stimulates eIF4A ATPase and unwinding activities by direct interaction through its 7-repeats region.
    Andreou AZ; Harms U; Klostermeier D
    RNA Biol; 2017 Jan; 14(1):113-123. PubMed ID: 27858515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wheat germ poly(A)-binding protein increases the ATPase and the RNA helicase activity of translation initiation factors eIF4A, eIF4B, and eIF-iso4F.
    Bi X; Goss DJ
    J Biol Chem; 2000 Jun; 275(23):17740-6. PubMed ID: 10748132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Further characterization of the helicase activity of eIF4A. Substrate specificity.
    Rogers GW; Lima WF; Merrick WC
    J Biol Chem; 2001 Apr; 276(16):12598-608. PubMed ID: 11278350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. eIF4B stimulates translation of long mRNAs with structured 5' UTRs and low closed-loop potential but weak dependence on eIF4G.
    Sen ND; Zhou F; Harris MS; Ingolia NT; Hinnebusch AG
    Proc Natl Acad Sci U S A; 2016 Sep; 113(38):10464-72. PubMed ID: 27601676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Further biochemical and kinetic characterization of human eukaryotic initiation factor 4H.
    Richter NJ; Rogers GW; Hensold JO; Merrick WC
    J Biol Chem; 1999 Dec; 274(50):35415-24. PubMed ID: 10585411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring RNA restructuring in a human cell-free extract reveals eIF4A-dependent and eIF4A-independent unwinding activity.
    O'Sullivan MH; Fraser CS
    J Biol Chem; 2023 Jul; 299(7):104936. PubMed ID: 37331603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and characterization of the expression of the translation initiation factor 4A (eIF4A) from Drosophila melanogaster.
    Hernández G; Lalioti V; Vandekerckhove J; Sierra JM; Santarén JF
    Proteomics; 2004 Feb; 4(2):316-26. PubMed ID: 14760701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. eIF4A: the godfather of the DEAD box helicases.
    Rogers GW; Komar AA; Merrick WC
    Prog Nucleic Acid Res Mol Biol; 2002; 72():307-31. PubMed ID: 12206455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. eIF4B and eIF4G jointly stimulate eIF4A ATPase and unwinding activities by modulation of the eIF4A conformational cycle.
    Andreou AZ; Klostermeier D
    J Mol Biol; 2014 Jan; 426(1):51-61. PubMed ID: 24080224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative characterization of two DEAD-box RNA helicases in superfamily II: human translation-initiation factor 4A and hepatitis C virus non-structural protein 3 (NS3) helicase.
    Du MX; Johnson RB; Sun XL; Staschke KA; Colacino J; Wang QM
    Biochem J; 2002 Apr; 363(Pt 1):147-55. PubMed ID: 11903057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The eukaryotic initiation factor eIF4H facilitates loop-binding, repetitive RNA unwinding by the eIF4A DEAD-box helicase.
    Sun Y; Atas E; Lindqvist L; Sonenberg N; Pelletier J; Meller A
    Nucleic Acids Res; 2012 Jul; 40(13):6199-207. PubMed ID: 22457067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. mRNA decay during herpes simplex virus (HSV) infections: protein-protein interactions involving the HSV virion host shutoff protein and translation factors eIF4H and eIF4A.
    Feng P; Everly DN; Read GS
    J Virol; 2005 Aug; 79(15):9651-64. PubMed ID: 16014927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. eIF4B, eIF4G and RNA regulate eIF4A activity in translation initiation by modulating the eIF4A conformational cycle.
    Harms U; Andreou AZ; Gubaev A; Klostermeier D
    Nucleic Acids Res; 2014 Jul; 42(12):7911-22. PubMed ID: 24848014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A region rich in aspartic acid, arginine, tyrosine, and glycine (DRYG) mediates eukaryotic initiation factor 4B (eIF4B) self-association and interaction with eIF3.
    Méthot N; Song MS; Sonenberg N
    Mol Cell Biol; 1996 Oct; 16(10):5328-34. PubMed ID: 8816444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA BIOCHEMISTRY. Factor-dependent processivity in human eIF4A DEAD-box helicase.
    García-García C; Frieda KL; Feoktistova K; Fraser CS; Block SM
    Science; 2015 Jun; 348(6242):1486-8. PubMed ID: 26113725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions between eIF4AI and its accessory factors eIF4B and eIF4H.
    Rozovsky N; Butterworth AC; Moore MJ
    RNA; 2008 Oct; 14(10):2136-48. PubMed ID: 18719248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.