These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 11418979)

  • 1. Reactive oxygen species and antimicrobial defenses of invertebrates: a bivalve model.
    Anderson RS
    Adv Exp Med Biol; 2001; 484():131-9. PubMed ID: 11418979
    [No Abstract]   [Full Text] [Related]  

  • 2. Hemocyte-derived reactive oxygen intermediate production in four bivalve mollusks.
    Anderson RS
    Dev Comp Immunol; 1994; 18(2):89-96. PubMed ID: 8082818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Reactive oxygen species and defense mechanisms in marine bivalves].
    Torreilles J; Guérin MC; Roch P
    C R Acad Sci III; 1996 Mar; 319(3):209-18. PubMed ID: 8761667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms and immunological roles of apoptosis in molluscs.
    Terahara K; Takahashi KG
    Curr Pharm Des; 2008; 14(2):131-7. PubMed ID: 18220825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparisons of PAH-induced immunomodulation in three bivalve molluscs.
    Wootton EC; Dyrynda EA; Pipe RK; Ratcliffe NA
    Aquat Toxicol; 2003 Oct; 65(1):13-25. PubMed ID: 12932698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacteria-hemocyte interactions and phagocytosis in marine bivalves.
    Canesi L; Gallo G; Gavioli M; Pruzzo C
    Microsc Res Tech; 2002 Jun; 57(6):469-76. PubMed ID: 12112429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hemocitical responses to environmental stress in invertebrates: a review.
    Perez DG; Fontanetti CS
    Environ Monit Assess; 2011 Jun; 177(1-4):437-47. PubMed ID: 20717717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Components of the cellular defense and detoxification system of the common cuttlefish Sepia officinalis (Mollusca, Cephalopoda).
    Beuerlein K; Löhr S; Westermann B; Ruth P; Schipp R
    Tissue Cell; 2002 Dec; 34(6):390-6. PubMed ID: 12441091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acute exposure to TiO
    Doyle JJ; Ward JE; Wikfors GH
    Mar Pollut Bull; 2018 Feb; 127():512-523. PubMed ID: 29475691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bivalve immunity: comparisons between the marine mussel (Mytilus edulis), the edible cockle (Cerastoderma edule) and the razor-shell (Ensis siliqua).
    Wootton EC; Dyrynda EA; Ratcliffe NA
    Fish Shellfish Immunol; 2003 Sep; 15(3):195-210. PubMed ID: 12892742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytotoxicity of CeO
    Sendra M; Volland M; Balbi T; Fabbri R; Yeste MP; Gatica JM; Canesi L; Blasco J
    Aquat Toxicol; 2018 Jul; 200():13-20. PubMed ID: 29704629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Apoptosis and histopathological lesions in parasite-infected species of bivalve molluscs.
    Abdel Aziz A
    J Egypt Soc Parasitol; 2009 Dec; 39(3):811-20. PubMed ID: 20120747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions of cationic polystyrene nanoparticles with marine bivalve hemocytes in a physiological environment: Role of soluble hemolymph proteins.
    Canesi L; Ciacci C; Fabbri R; Balbi T; Salis A; Damonte G; Cortese K; Caratto V; Monopoli MP; Dawson K; Bergami E; Corsi I
    Environ Res; 2016 Oct; 150():73-81. PubMed ID: 27257827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of tributyltin and benzo[a]pyrene on the immune-associated activities of hemocytes and recovery responses in the gastropod abalone, Haliotis diversicolor.
    Gopalakrishnan S; Huang WB; Wang QW; Wu ML; Liu J; Wang KJ
    Comp Biochem Physiol C Toxicol Pharmacol; 2011 Aug; 154(2):120-8. PubMed ID: 21549218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The paralytic shellfish toxin, saxitoxin, enters the cytoplasm and induces apoptosis of oyster immune cells through a caspase-dependent pathway.
    Abi-Khalil C; Finkelstein DS; Conejero G; Du Bois J; Destoumieux-Garzon D; Rolland JL
    Aquat Toxicol; 2017 Sep; 190():133-141. PubMed ID: 28711010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The known and unknown sources of reactive oxygen and nitrogen species in haemocytes of marine bivalve molluscs.
    Donaghy L; Hong HK; Jauzein C; Choi KS
    Fish Shellfish Immunol; 2015 Jan; 42(1):91-7. PubMed ID: 25449373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genotoxic and immunotoxic potential effects of selected psychotropic drugs and antibiotics on blue mussel (Mytilus edulis) hemocytes.
    Lacaze E; Pédelucq J; Fortier M; Brousseau P; Auffret M; Budzinski H; Fournier M
    Environ Pollut; 2015 Jul; 202():177-86. PubMed ID: 25829077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro production of hydrogen peroxide by the amoebocytes of the scallop, Patinopecten yessoensis (Jay).
    Nakamura M; Mori K; Inooka S; Nomura T
    Dev Comp Immunol; 1985; 9(3):407-17. PubMed ID: 4043480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional and molecular responses of the blue mussel Mytilus edulis' hemocytes exposed to cadmium - An in vitro model and transcriptomic approach.
    Granger Joly de Boissel P; Fournier M; Rodriguez-Lecompte JC; McKenna P; Kibenge F; Siah A
    Fish Shellfish Immunol; 2017 Aug; 67():575-585. PubMed ID: 28600193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Are CuO nanoparticles effects on hemocytes of the marine scallop (Chlamys farreri) caused by particles and/or corresponding released ions?
    Sun X; Chen B; Bin Xia ; Han Q; Zhu L; Qu K
    Ecotoxicol Environ Saf; 2017 May; 139():65-72. PubMed ID: 28110047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.