These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 11419617)

  • 1. Spatio-temporal pattern formation on spherical surfaces: numerical simulation and application to solid tumour growth.
    Chaplain MA; Ganesh M; Graham IG
    J Math Biol; 2001 May; 42(5):387-423. PubMed ID: 11419617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical modelling of the spatio-temporal response of cytotoxic T-lymphocytes to a solid tumour.
    Matzavinos A; Chaplain MA; Kuznetsov VA
    Math Med Biol; 2004 Mar; 21(1):1-34. PubMed ID: 15065736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Turing-Hopf patterns on growing domains: The torus and the sphere.
    Sánchez-Garduño F; Krause AL; Castillo JA; Padilla P
    J Theor Biol; 2019 Nov; 481():136-150. PubMed ID: 30266461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mathematical modelling of drug transport in tumour multicell spheroids and monolayer cultures.
    Ward JP; King JR
    Math Biosci; 2003 Feb; 181(2):177-207. PubMed ID: 12445761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions between a uniformly proliferating tumour and its surroundings: uniform material properties.
    Franks SJ; King JR
    Math Med Biol; 2003 Mar; 20(1):47-89. PubMed ID: 12974498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A weakly nonlinear analysis of a model of avascular solid tumour growth.
    Byrne HM
    J Math Biol; 1999 Jul; 39(1):59-89. PubMed ID: 10444851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pattern formation from spatially heterogeneous reaction-diffusion systems.
    Van Gorder RA
    Philos Trans A Math Phys Eng Sci; 2021 Dec; 379(2213):20210001. PubMed ID: 34743604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pattern formation and spatiotemporal irregularity in a model for macrophage-tumour interactions.
    Owen MR; Sherratt JA
    J Theor Biol; 1997 Nov; 189(1):63-80. PubMed ID: 9398504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of cell-cell interactions in a two-phase model for avascular tumour growth.
    Breward CJ; Byrne HM; Lewis CE
    J Math Biol; 2002 Aug; 45(2):125-52. PubMed ID: 12181602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetric growth of models of avascular solid tumours: exploiting symmetries.
    Byrne H; Matthews P
    IMA J Math Appl Med Biol; 2002 Mar; 19(1):1-29. PubMed ID: 12408222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new mathematical model for avascular tumour growth.
    Sherratt JA; Chaplain MA
    J Math Biol; 2001 Oct; 43(4):291-312. PubMed ID: 12120870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oscillatory dynamics in a model of vascular tumour growth--implications for chemotherapy.
    Stamper IJ; Owen MR; Maini PK; Byrne HM
    Biol Direct; 2010 Apr; 5():27. PubMed ID: 20406447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tumour dynamics and necrosis: surface tension and stability.
    Landman KA; Please CP
    IMA J Math Appl Med Biol; 2001 Jun; 18(2):131-58. PubMed ID: 11453466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A non-linear analysis of Turing pattern formation.
    Chen Y; Buceta J
    PLoS One; 2019; 14(8):e0220994. PubMed ID: 31398237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the concentration profile of a growth inhibitory factor in multicell spheroids.
    Chaplain MA; Britton NF
    Math Biosci; 1993 Jun; 115(2):233-43. PubMed ID: 8507991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Curvature, Growth, and Anisotropy on the Evolution of Turing Patterns on Growing Manifolds.
    Krause AL; Ellis MA; Van Gorder RA
    Bull Math Biol; 2019 Mar; 81(3):759-799. PubMed ID: 30511207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of growth-induced stress from the surrounding medium on the development of multicell spheroids.
    Chen CY; Byrne HM; King JR
    J Math Biol; 2001 Sep; 43(3):191-220. PubMed ID: 11681526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mathematical analysis of a tumour-immune interaction model: A moving boundary problem.
    Malinzi J; Amima I
    Math Biosci; 2019 Feb; 308():8-19. PubMed ID: 30537482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Turing instabilities and spatio-temporal chaos in ratio-dependent Holling-Tanner model.
    Banerjee M; Banerjee S
    Math Biosci; 2012 Mar; 236(1):64-76. PubMed ID: 22207074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen diffusion and reaction kinetics in the photodynamic therapy of multicell tumour spheroids.
    Nichols MG; Foster TH
    Phys Med Biol; 1994 Dec; 39(12):2161-81. PubMed ID: 15551546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.