BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 11419697)

  • 1. Frog oocytes: a living test tube for studies on metabolic regulation.
    Ureta T; Preller A; Kessi E
    IUBMB Life; 2001 Jan; 51(1):5-10. PubMed ID: 11419697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Search for compartments of glucose metabolism in the microinjected frog oocyte.
    Ureta T; Radojković J
    Arch Biol Med Exp; 1985 Dec; 18(3-4):253-9. PubMed ID: 3939391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo operation of the pentose phosphate pathway in frog oocytes is limited by NADP+ availability.
    Preller A; Guixé V; Ureta T
    FEBS Lett; 1999 Mar; 446(1):149-52. PubMed ID: 10100632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycogen synthesis by the direct or indirect pathways depends on glucose availability: in vivo studies in frog oocytes.
    Preller A; Kessi E; Ureta T
    FEBS Lett; 2007 Feb; 581(4):663-6. PubMed ID: 17258211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hexokinase and not glycogen synthase controls the flux through the glycogen synthesis pathway in frog oocytes.
    Preller A; Wilson CA; Quiroga-Roger D; Ureta T
    FEBS Lett; 2013 Sep; 587(17):2825-31. PubMed ID: 23831065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo measurements of control coefficients for hexokinase and glucose-6-phosphate dehydrogenase in Xenopus laevis oocytes.
    Ureta T; Fernández WY; Centelles JJ; Cascante M
    FEBS Lett; 2000 Jun; 475(2):145-9. PubMed ID: 10858506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of long-term exposure to Cu2+ and Cd2+ on the pentose phosphate pathway dehydrogenase activities in the ovary of adult Bufo arenarum: possible role as biomarker for Cu2+ toxicity.
    Carattino MD; Peralta S; Pérez-Coll C; Naab F; Burlón A; Kreiner AJ; Preller AF; de Schroeder TM
    Ecotoxicol Environ Saf; 2004 Mar; 57(3):311-8. PubMed ID: 15041254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulatory role of fructose-2,6-bisP on glucose metabolism in frog oocytes: in vivo inhibition of glycogen synthesis.
    Guixé V; Preller A; Kessi E; Ureta T
    Arch Biochem Biophys; 1997 Dec; 348(1):75-81. PubMed ID: 9390176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frog oocytes: a model system for in vivo studies on the regulation of glucose metabolism.
    Ureta T; Radojković J
    Acta Cient Venez; 1979; 30(4):396-400. PubMed ID: 575598
    [No Abstract]   [Full Text] [Related]  

  • 10. Involvement of the pentose phosphate pathway and redox regulation in fertilization in the mouse.
    Urner F; Sakkas D
    Mol Reprod Dev; 2005 Apr; 70(4):494-503. PubMed ID: 15685628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling of glucose transport and phosphorylation in Xenopus oocytes and cultured cells: determination of the rate-limiting step.
    Whitesell RR; Aboumrad MK; Powers AC; Regen DM; Le C; Beechem JM; May JM; Abumrad NA
    J Cell Physiol; 1993 Dec; 157(3):509-18. PubMed ID: 8253862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Status of RNAs, localized in Xenopus laevis oocytes, in the frogs Rana pipiens and Eleutherodactylus coqui.
    Nath K; Boorech JL; Beckham YM; Burns MM; Elinson RP
    J Exp Zool B Mol Dev Evol; 2005 Jan; 304(1):28-39. PubMed ID: 15515051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical manipulation of glucose metabolism in porcine oocytes: effects on nuclear and cytoplasmic maturation in vitro.
    Herrick JR; Brad AM; Krisher RL
    Reproduction; 2006 Feb; 131(2):289-98. PubMed ID: 16452722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic regulation during early frog development: glycogenic flux in Xenopus oocytes, eggs, and embryos.
    Dworkin MB; Dworkin-Rastl E
    Dev Biol; 1989 Apr; 132(2):512-23. PubMed ID: 2538374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential role for the sorbitol pathway in the meiotic dysfunction exhibited by oocytes from diabetic mice.
    Colton SA; Downs SM
    J Exp Zool A Comp Exp Biol; 2004 May; 301(5):439-48. PubMed ID: 15114651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the metabolic changes underlying growth factor angiogenic activation: identification of new potential therapeutic targets.
    Vizán P; Sánchez-Tena S; Alcarraz-Vizán G; Soler M; Messeguer R; Pujol MD; Lee WN; Cascante M
    Carcinogenesis; 2009 Jun; 30(6):946-52. PubMed ID: 19369582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activity of key enzymes involved in glucose and triglyceride catabolism during bovine oocyte maturation in vitro.
    Cetica P; Pintos L; Dalvit G; Beconi M
    Reproduction; 2002 Nov; 124(5):675-81. PubMed ID: 12417006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycogen synthesis in amphibian oocytes: evidence for an indirect pathway.
    Kessi E; Guixé V; Preller A; Ureta T
    Biochem J; 1996 Apr; 315 ( Pt 2)(Pt 2):455-60. PubMed ID: 8615814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucose metabolism during embryogenesis of the hard tick Boophilus microplus.
    Moraes J; Galina A; Alvarenga PH; Rezende GL; Masuda A; da Silva Vaz I; Logullo C
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Apr; 146(4):528-33. PubMed ID: 16904922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Function and regulation of the pentose phosphate pathway in brain.
    Baquer NZ; Hothersall JS; McLean P
    Curr Top Cell Regul; 1988; 29():265-89. PubMed ID: 3293926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.