These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Cerebrospinal fluid shunts: an experimental evaluation of flow rates and pressure values in the anti-siphon valve. Fox JL; Portnoy HD; Shulte RR Surg Neurol; 1973 Sep; 1(5):299-302. PubMed ID: 4724951 [No Abstract] [Full Text] [Related]
3. [Effect of the anti-siphon device (ASD) on the function of various hydrocephalus drainage systems in the child]. Gruber R; Glaser F Z Kinderchir; 1986 Dec; 41(6):327-34. PubMed ID: 3825299 [TBL] [Abstract][Full Text] [Related]
4. [The anti-siphon mechanism in the treatment of excessive cerebrospinal fluid drainage in patients with ventriculoatrial and ventriculoperitoneal shunting valves]. Jaskólska E; MacKinnon AE Neurol Neurochir Pol; 1990; 24(3-4):199-205. PubMed ID: 2131414 [No Abstract] [Full Text] [Related]
5. [Shunt operations for normal pressure hydrocephalus--especially on the indication for the shunting and the use of anti-siphon value (author's transl)]. Kyuma Y; Masuda H; Pak S; Fujino H; Yamaguchi K; Kuwabara T No Shinkei Geka; 1979 Mar; 7(3):249-55. PubMed ID: 440524 [No Abstract] [Full Text] [Related]
9. Determining the best cerebrospinal fluid shunt valve design: the pediatric valve design trial. Drake JM; Kestle J Neurosurgery; 1996 Mar; 38(3):604-7. PubMed ID: 8837819 [No Abstract] [Full Text] [Related]
10. Posture-independent piston valve: a novel valve mechanism that actuates based on intracranial pressure alone. Medow JE; Luzzio CC J Neurosurg Pediatr; 2012 Jan; 9(1):64-8. PubMed ID: 22208323 [TBL] [Abstract][Full Text] [Related]
11. A theoretical study of new types of valve shunts for cerebrospinal fluid. Bosio A ASAIO Trans; 1991; 37(3):M289-90. PubMed ID: 1751154 [TBL] [Abstract][Full Text] [Related]
12. Hydraulic and mechanical mis-matching of valve shunts used in the treatment of hydrocephalus: the need for a servo-valve shunt. Hakim S Dev Med Child Neurol; 1973 Oct; 15(5):646-53. PubMed ID: 4765233 [No Abstract] [Full Text] [Related]
13. A randomized, controlled study of a programmable shunt valve versus a conventional valve for patients with hydrocephalus. Czosnyka Z; Czosnyka M; Copeman J; Pickard JD Neurosurgery; 2000 Nov; 47(5):1250-1. PubMed ID: 11063123 [No Abstract] [Full Text] [Related]
14. Determining the best cerebrospinal fluid shunt valve design: the pediatric valve design trial. Drake JM; Kestle JT Neurosurgery; 1998 Nov; 43(5):1259-60. PubMed ID: 9802875 [No Abstract] [Full Text] [Related]
15. [Experiences of shunt operation with programmable pressure valve in infants with hydrocephalus]. Fuse T; Takagi T; Ohno M; Nagai H No To Hattatsu; 1988; 20(5):433-5. PubMed ID: 3224018 [No Abstract] [Full Text] [Related]
16. [A design of a new valve system used in the treatment of hydrocephalus (author's transl)]. Nakajima M; Yoshikawa T; Hitomi K Iyodenshi To Seitai Kogaku; 1977 Aug; 15(4):236-42. PubMed ID: 926422 [No Abstract] [Full Text] [Related]
17. Novel method for controlling cerebrospinal fluid flow and intracranial pressure by use of a tandem shunt valve system. Aihara Y; Kawamata T; Mitsuyama T; Hori T; Okada Y Pediatr Neurosurg; 2010; 46(1):12-8. PubMed ID: 20453558 [TBL] [Abstract][Full Text] [Related]
18. [Treatment of hydrocephalus with Cordis-Hakim valve (author's transl)]. Schubert W; Prater C; Roesner D Z Kinderchir; 1981 May; 33(1):18-24. PubMed ID: 7257613 [TBL] [Abstract][Full Text] [Related]
19. [Experiences with the Cordis-Hakim-valve]. Leheta F Zentralbl Neurochir; 1972; 33(1):69-74. PubMed ID: 5072152 [No Abstract] [Full Text] [Related]
20. X-ray manifestations of the Holter valve in hydrocephalus. Blatt CJ; Shulman K Radiology; 1969 Jun; 92(7):1517-21. PubMed ID: 5799841 [No Abstract] [Full Text] [Related] [Next] [New Search]