BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 11419938)

  • 1. Conformational changes of the ferric uptake regulation protein upon metal activation and DNA binding; first evidence of structural homologies with the diphtheria toxin repressor.
    Gonzalez de Peredo A; Saint-Pierre C; Latour JM; Michaud-Soret I; Forest E
    J Mol Biol; 2001 Jun; 310(1):83-91. PubMed ID: 11419938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron(II) triggered conformational changes in Escherichia coli fur upon DNA binding: a study using molecular modeling.
    Hamed MY; Al-Jabour S
    J Mol Graph Model; 2006 Oct; 25(2):234-46. PubMed ID: 16443380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ferric uptake regulator protein: binding free energy calculations and per-residue free energy decomposition.
    Ahmad R; Brandsdal BO; Michaud-Soret I; Willassen NP
    Proteins; 2009 May; 75(2):373-86. PubMed ID: 18831042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the N-terminal helix in the metal ion-induced activation of the diphtheria toxin repressor DtxR.
    D'Aquino JA; Lattimer JR; Denninger A; D'Aquino KE; Ringe D
    Biochemistry; 2007 Oct; 46(42):11761-70. PubMed ID: 17902703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution structure of the diphtheria toxin repressor complexed with cobalt and manganese reveals an SH3-like third domain and suggests a possible role of phosphate as co-corepressor.
    Qiu X; Pohl E; Holmes RK; Hol WG
    Biochemistry; 1996 Sep; 35(38):12292-302. PubMed ID: 8823163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The structure of the Helicobacter pylori ferric uptake regulator Fur reveals three functional metal binding sites.
    Dian C; Vitale S; Leonard GA; Bahlawane C; Fauquant C; Leduc D; Muller C; de Reuse H; Michaud-Soret I; Terradot L
    Mol Microbiol; 2011 Mar; 79(5):1260-75. PubMed ID: 21208302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural comparison of the PhoB and OmpR DNA-binding/transactivation domains and the arrangement of PhoB molecules on the phosphate box.
    Okamura H; Hanaoka S; Nagadoi A; Makino K; Nishimura Y
    J Mol Biol; 2000 Feb; 295(5):1225-36. PubMed ID: 10653699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of the metal-ion-activated diphtheria toxin repressor/tox operator complex.
    White A; Ding X; vanderSpek JC; Murphy JR; Ringe D
    Nature; 1998 Jul; 394(6692):502-6. PubMed ID: 9697776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of a cobalt-activated diphtheria toxin repressor-DNA complex reveals a metal-binding SH3-like domain.
    Pohl E; Holmes RK; Hol WG
    J Mol Biol; 1999 Sep; 292(3):653-67. PubMed ID: 10497029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of the cyanobacterial metallothionein repressor SmtB: a model for metalloregulatory proteins.
    Cook WJ; Kar SR; Taylor KB; Hall LM
    J Mol Biol; 1998 Jan; 275(2):337-46. PubMed ID: 9466913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the DNA-binding site in the ferric uptake regulator protein from Escherichia coli by UV crosslinking and mass spectrometry.
    Tiss A; Barre O; Michaud-Soret I; Forest E
    FEBS Lett; 2005 Oct; 579(25):5454-60. PubMed ID: 16212958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional roles of amino acid residues involved in forming the alpha-helix-turn-alpha-helix operator DNA binding motif of Tet repressor from Tn10.
    Baumeister R; Müller G; Hecht B; Hillen W
    Proteins; 1992 Oct; 14(2):168-77. PubMed ID: 1409566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of the Escherichia coli Rob transcription factor in complex with DNA.
    Kwon HJ; Bennik MH; Demple B; Ellenberger T
    Nat Struct Biol; 2000 May; 7(5):424-30. PubMed ID: 10802742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combinations of the alpha-helix-turn-alpha-helix motif of TetR with respective residues from LacI or 434Cro: DNA recognition, inducer binding, and urea-dependent denaturation.
    Backes H; Berens C; Helbl V; Walter S; Schmid FX; Hillen W
    Biochemistry; 1997 May; 36(18):5311-22. PubMed ID: 9154913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A ZnS(4) structural zinc site in the Helicobacter pylori ferric uptake regulator.
    Vitale S; Fauquant C; Lascoux D; Schauer K; Saint-Pierre C; Michaud-Soret I
    Biochemistry; 2009 Jun; 48(24):5582-91. PubMed ID: 19419176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis for operator and antirepressor recognition by Myxococcus xanthus CarA repressor.
    Navarro-Avilés G; Jiménez MA; Pérez-Marín MC; González C; Rico M; Murillo FJ; Elías-Arnanz M; Padmanabhan S
    Mol Microbiol; 2007 Feb; 63(4):980-94. PubMed ID: 17233828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional repressor CopR: structure model-based localization of the deoxyribonucleic acid binding motif.
    Steinmetzer K; Hillisch A; Behlke J; Brantl S
    Proteins; 2000 Mar; 38(4):393-406. PubMed ID: 10707026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal-dependent folding and stability of nuclear hormone receptor DNA-binding domains.
    Low LY; Hernández H; Robinson CV; O'Brien R; Grossmann JG; Ladbury JE; Luisi B
    J Mol Biol; 2002 May; 319(1):87-106. PubMed ID: 12051939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decreased sensitivity to changes in the concentration of metal ions as the basis for the hyperactivity of DtxR(E175K).
    D'Aquino JA; Denninger AR; Moulin AG; D'Aquino KE; Ringe D
    J Mol Biol; 2009 Jul; 390(1):112-23. PubMed ID: 19433095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Mu repressor-DNA complex contains an immobilized 'wing' within the minor groove.
    Wojciak JM; Iwahara J; Clubb RT
    Nat Struct Biol; 2001 Jan; 8(1):84-90. PubMed ID: 11135677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.