These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 11420442)

  • 1. Enzyme specificity under dynamic control II: Principal component analysis of alpha-lytic protease using global and local solvent boundary conditions.
    Ota N; Agard DA
    Protein Sci; 2001 Jul; 10(7):1403-14. PubMed ID: 11420442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzyme specificity under dynamic control: a normal mode analysis of alpha-lytic protease.
    Miller DW; Agard DA
    J Mol Biol; 1999 Feb; 286(1):267-78. PubMed ID: 9931265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between enzyme specificity and the backbone dynamics of free and inhibited alpha-lytic protease.
    Davis JH; Agard DA
    Biochemistry; 1998 May; 37(21):7696-707. PubMed ID: 9601029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water-protein interplay reveals the specificity of alpha-lytic protease.
    Kang H; Yao XQ; She ZS; Zhu H
    Biochem Biophys Res Commun; 2009 Jul; 385(2):165-9. PubMed ID: 19450547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic and structural characterization of mutations of glycine 216 in alpha-lytic protease: a new target for engineering substrate specificity.
    Mace JE; Agard DA
    J Mol Biol; 1995 Dec; 254(4):720-36. PubMed ID: 7500345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Free energy calculations on binding and catalysis by alpha-lytic protease: the role of substrate size in the P1 pocket.
    Caldwell JW; Agard DA; Kollman PA
    Proteins; 1991; 10(2):140-8. PubMed ID: 1896427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis for the broad substrate specificity of fiddler crab collagenolytic serine protease 1.
    Tsu CA; Perona JJ; Fletterick RJ; Craik CS
    Biochemistry; 1997 May; 36(18):5393-401. PubMed ID: 9154921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural plasticity broadens the specificity of an engineered protease.
    Bone R; Silen JL; Agard DA
    Nature; 1989 May; 339(6221):191-5. PubMed ID: 2716847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational substates in enzyme mechanism: the 120 K structure of alpha-lytic protease at 1.5 A resolution.
    Rader SD; Agard DA
    Protein Sci; 1997 Jul; 6(7):1375-86. PubMed ID: 9232638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein engineering of the high-alkaline serine protease PB92 from Bacillus alcalophilus: functional and structural consequences of mutation at the S4 substrate binding pocket.
    Teplyakov AV; van der Laan JM; Lammers AA; Kelders H; Kalk KH; Misset O; Mulleners LJ; Dijkstra BW
    Protein Eng; 1992 Jul; 5(5):413-20. PubMed ID: 1518789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into cleavage specificity from the crystal structure of foot-and-mouth disease virus 3C protease complexed with a peptide substrate.
    Zunszain PA; Knox SR; Sweeney TR; Yang J; Roqué-Rosell N; Belsham GJ; Leatherbarrow RJ; Curry S
    J Mol Biol; 2010 Jan; 395(2):375-89. PubMed ID: 19883658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional linkage between the active site of alpha-lytic protease and distant regions of structure: scanning alanine mutagenesis of a surface loop affects activity and substrate specificity.
    Mace JE; Wilk BJ; Agard DA
    J Mol Biol; 1995 Aug; 251(1):116-34. PubMed ID: 7643381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural analysis of specificity: alpha-lytic protease complexes with analogues of reaction intermediates.
    Bone R; Frank D; Kettner CA; Agard DA
    Biochemistry; 1989 Sep; 28(19):7600-9. PubMed ID: 2611204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamic criterion for the conformation of P1 residues of substrates and of inhibitors in complexes with serine proteinases.
    Qasim MA; Lu SM; Ding J; Bateman KS; James MN; Anderson S; Song J; Markley JL; Ganz PJ; Saunders CW; Laskowski M
    Biochemistry; 1999 Jun; 38(22):7142-50. PubMed ID: 10353824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and kinetic analysis of the substrate specificity of human fibroblast activation protein alpha.
    Aertgeerts K; Levin I; Shi L; Snell GP; Jennings A; Prasad GS; Zhang Y; Kraus ML; Salakian S; Sridhar V; Wijnands R; Tennant MG
    J Biol Chem; 2005 May; 280(20):19441-4. PubMed ID: 15809306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active site of alpha-lytic protease: enzyme-substrate interactions.
    Bauer CA; Brayer GD; Sielecki AR; James MN
    Eur J Biochem; 1981 Nov; 120(2):289-94. PubMed ID: 7032913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into affinity and specificity in the complexes of alpha-lytic protease and its inhibitor proteins: binding free energy from molecular dynamics simulation.
    Deng NJ; Cieplak P
    Phys Chem Chem Phys; 2009 Jul; 11(25):4968-81. PubMed ID: 19562127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conserved mode of peptidomimetic inhibition and substrate recognition of human cytomegalovirus protease.
    Tong L; Qian C; Massariol MJ; Déziel R; Yoakim C; Lagacé L
    Nat Struct Biol; 1998 Sep; 5(9):819-26. PubMed ID: 9731777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and designing of the S3 site of aqualysin I, a thermophilic subtilisin-related serine protease.
    Tanaka T; Matsuzawa H; Ohta T
    J Biochem; 1999 Jun; 125(6):1016-21. PubMed ID: 10348901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long dynamics simulations of proteins using atomistic force fields and a continuum representation of solvent effects: calculation of structural and dynamic properties.
    Li X; Hassan SA; Mehler EL
    Proteins; 2005 Aug; 60(3):464-84. PubMed ID: 15959866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.