BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 11420652)

  • 1. Biogenic production of cyanide and its application to gold recovery.
    Campbell SC; Olson GJ; Clark TR; McFeters G
    J Ind Microbiol Biotechnol; 2001 Mar; 26(3):134-9. PubMed ID: 11420652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of cyanide and dissolved oxygen concentration on biological Au recovery.
    Kita Y; Nishikawa H; Takemoto T
    J Biotechnol; 2006 Jul; 124(3):545-51. PubMed ID: 16567012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gold biorecovery from e-waste: An improved strategy through spent medium leaching with pH modification.
    Natarajan G; Ting YP
    Chemosphere; 2015 Oct; 136():232-8. PubMed ID: 26025187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal solubilization from metal-containing solid materials by cyanogenic Chromobacterium violaceum.
    Faramarzi MA; Stagars M; Pensini E; Krebs W; Brandl H
    J Biotechnol; 2004 Sep; 113(1-3):321-6. PubMed ID: 15380664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pretreatment of e-waste and mutation of alkali-tolerant cyanogenic bacteria promote gold biorecovery.
    Natarajan G; Ting YP
    Bioresour Technol; 2014; 152():80-5. PubMed ID: 24291311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production and characterization of violacein by locally isolated Chromobacterium violaceum grown in agricultural wastes.
    Ahmad WA; Yusof NZ; Nordin N; Zakaria ZA; Rezali MF
    Appl Biochem Biotechnol; 2012 Jul; 167(5):1220-34. PubMed ID: 22278051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing gold recovery from electronic waste via lixiviant metabolic engineering in Chromobacterium violaceum.
    Tay SB; Natarajan G; Rahim MN; Tan HT; Chung MC; Ting YP; Yew WS
    Sci Rep; 2013; 3():2236. PubMed ID: 23868689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CYANIDE FORMATION BY CHROMOBACTERIUM VIOLACEUM.
    MICHAELS R; CORPE WA
    J Bacteriol; 1965 Jan; 89(1):106-12. PubMed ID: 14255648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The respiratory system of Chromobacterium violaceum grown under conditions of high and low cyanide evolution.
    Niven DF; Collins PA; Knowles CJ
    J Gen Microbiol; 1975 Oct; 90(2):271-85. PubMed ID: 172598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A critical review of the effects of gold cyanide-bearing tailings solutions on wildlife.
    Donato DB; Nichols O; Possingham H; Moore M; Ricci PF; Noller BN
    Environ Int; 2007 Oct; 33(7):974-84. PubMed ID: 17540445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biogenic Cyanide Production Promotes Dissolution of Gold Nanoparticles in Soil.
    McGivney E; Gao X; Liu Y; Lowry GV; Casman E; Gregory KB; VanBriesen JM; Avellan A
    Environ Sci Technol; 2019 Feb; 53(3):1287-1295. PubMed ID: 30590926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyanide speciation at four gold leach operations undergoing remediation.
    Johnson CA; Grimes DJ; Leinz RW; Rye RO
    Environ Sci Technol; 2008 Feb; 42(4):1038-44. PubMed ID: 18351069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metals bioleaching from electronic waste by Chromobacterium violaceum and Pseudomonads sp.
    Pradhan JK; Kumar S
    Waste Manag Res; 2012 Nov; 30(11):1151-9. PubMed ID: 22452961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toolkit Development for Cyanogenic and Gold Biorecovery Chassis
    Liow LT; Go MK; Chang MW; Yew WS
    ACS Synth Biol; 2020 Apr; 9(4):953-961. PubMed ID: 32160465
    [No Abstract]   [Full Text] [Related]  

  • 15. Gamma-cyano-alpha-aminobutyric acid. A new product of cyanide fixation in Chromobacterium violaceum.
    Brysk MM; Ressler C
    J Biol Chem; 1970 Mar; 245(5):1156-60. PubMed ID: 5417261
    [No Abstract]   [Full Text] [Related]  

  • 16. [Biooxidation of gold-bearing sulfide ore and subsequent biological treatment of cyanidation residues].
    Kanaev AT; Bulaev AG; Semenchenko GV; Kanaeva ZK; Shilmanova AA
    Prikl Biokhim Mikrobiol; 2016; 52(4):392-401. PubMed ID: 29512983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of Chromobacterium violaceum genes with potential biotechnological application in environmental detoxification.
    Carepo MS; Azevedo JS; Porto JI; Bentes-Sousa AR; Batista Jda S; Silva AL; Schneider MP
    Genet Mol Res; 2004 Mar; 3(1):181-94. PubMed ID: 15100998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyanide formation from glycine by nonproliferating cells of Chromobacterium violaceum.
    Michaels R; Hankes LV; Corpe WA
    Arch Biochem Biophys; 1965 Jul; 111(1):121-5. PubMed ID: 5851865
    [No Abstract]   [Full Text] [Related]  

  • 19. Microbial destruction of cyanide wastes in gold mining: process review.
    Akcil A; Mudder T
    Biotechnol Lett; 2003 Mar; 25(6):445-50. PubMed ID: 12882268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat evolution and energy analysis of cyanide bioproduction by a cyanogenic microorganism with the potential for bioleaching of precious metals.
    Yuan Z; Yuan Y; Liu W; Ruan J; Li Y; Fan Y; Qiu R
    J Hazard Mater; 2019 Sep; 377():284-289. PubMed ID: 31173977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.