These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 11420657)
1. Predicting vegetative inoculum performance to maximize phytase production in solid-state fermentation using response surface methodology. Krishna C; Nokes SE J Ind Microbiol Biotechnol; 2001 Mar; 26(3):161-70. PubMed ID: 11420657 [TBL] [Abstract][Full Text] [Related]
2. Phytase production by solid-state fermentation of groundnut oil cake by Aspergillus niger: A bioprocess optimization study for animal feedstock applications. Buddhiwant P; Bhavsar K; Kumar VR; Khire JM Prep Biochem Biotechnol; 2016 Aug; 46(6):531-8. PubMed ID: 26176365 [TBL] [Abstract][Full Text] [Related]
3. High level phytase production by Aspergillus niger NCIM 563 in solid state culture: response surface optimization, up-scaling, and its partial characterization. Bhavsar K; Kumar VR; Khire JM J Ind Microbiol Biotechnol; 2011 Sep; 38(9):1407-17. PubMed ID: 21184251 [TBL] [Abstract][Full Text] [Related]
4. Vinegar production residue as substrates for phytase production by Aspergillus ficuum. Wang Z; Dong X; Tong J; Wu Y; Zhang Q Waste Manag Res; 2010 Feb; 28(2):165-8. PubMed ID: 19748935 [TBL] [Abstract][Full Text] [Related]
5. Production and characterization of a novel, thermotolerant fungal phytase from agro-industrial byproducts for cattle feed. Kumari N; Bansal S Biotechnol Lett; 2021 Apr; 43(4):865-879. PubMed ID: 33387113 [TBL] [Abstract][Full Text] [Related]
6. Phytase production by Aspergillus oryzae in solid-state fermentation and its applicability in dephytinization of wheat bran [corrected]. Sapna ; Singh B Appl Biochem Biotechnol; 2014 Aug; 173(7):1885-95. PubMed ID: 24879597 [TBL] [Abstract][Full Text] [Related]
7. Optimization of solid-state fermentation for phytase production by Thermomyces lanuginosus using response surface methodology. Berikten D; Kivanc M Prep Biochem Biotechnol; 2014; 44(8):834-48. PubMed ID: 24279930 [TBL] [Abstract][Full Text] [Related]
8. Solid-state fermentation for production of phytase by Rhizopus oligosporus. Sabu A; Sarita S; Pandey A; Bogar B; Szakacs G; Soccol CR Appl Biochem Biotechnol; 2002; 102-103(1-6):251-60. PubMed ID: 12396128 [TBL] [Abstract][Full Text] [Related]
9. Microbial production of extra-cellular phytase using polystyrene as inert solid support. Gautam P; Sabu A; Pandey A; Szakacs G; Soccol CR Bioresour Technol; 2002 Jul; 83(3):229-33. PubMed ID: 12094799 [TBL] [Abstract][Full Text] [Related]
10. Response surface methodology for optimizing the fermentation medium of alpha-galactosidase in solid-state fermentation. Liu CQ; Chen QH; Tang B; Ruan H; He GQ Lett Appl Microbiol; 2007 Aug; 45(2):206-12. PubMed ID: 17651220 [TBL] [Abstract][Full Text] [Related]
11. Phytase production by Aspergillus niger CFR 335 and Aspergillus ficuum SGA 01 through submerged and solid-state fermentation. Shivanna GB; Venkateswaran G ScientificWorldJournal; 2014; 2014():392615. PubMed ID: 24688383 [TBL] [Abstract][Full Text] [Related]
12. Enhanced submerged Aspergillus ficuum phytase production by implementation of fed-batch fermentation. Coban HB; Demirci A Bioprocess Biosyst Eng; 2014 Dec; 37(12):2579-86. PubMed ID: 24958522 [TBL] [Abstract][Full Text] [Related]
13. Effect of different cultural conditions for phytase production by Aspergillus niger CFR 335 in submerged and solid-state fermentations. Gunashree BS; Venkateswaran G J Ind Microbiol Biotechnol; 2008 Dec; 35(12):1587-96. PubMed ID: 18663503 [TBL] [Abstract][Full Text] [Related]
14. Phytase production by a thermophilic mould Sporotrichum thermophile in solid state fermentation and its potential applications. Singh B; Satyanarayana T Bioresour Technol; 2008 May; 99(8):2824-30. PubMed ID: 17681787 [TBL] [Abstract][Full Text] [Related]
15. Increase of the phytase production by Aspergillus japonicus and its biocatalyst potential on chicken feed treatment. Maller A; Vici AC; Facchini Fdel A; da Silva TM; Kamimura ES; Rodrigues MI; Jorge JA; Terenzi HF; de Lourdes Teixeira de Moraes Polizeli M J Basic Microbiol; 2014 Jul; 54 Suppl 1():S152-60. PubMed ID: 24026803 [TBL] [Abstract][Full Text] [Related]
16. Combinatorial approach of statistical optimization and mutagenesis for improved production of acidic phytase by Aspergillus niger NCIM 563 under submerged fermentation condition. Bhavsar K; Gujar P; Shah P; Kumar VR; Khire JM Appl Microbiol Biotechnol; 2013 Jan; 97(2):673-9. PubMed ID: 22382169 [TBL] [Abstract][Full Text] [Related]
17. Comparison of phytase production on wheat bran and oilcakes in solid-state fermentation by Mucor racemosus. Roopesh K; Ramachandran S; Nampoothiri KM; Szakacs G; Pandey A Bioresour Technol; 2006 Feb; 97(3):506-11. PubMed ID: 15979307 [TBL] [Abstract][Full Text] [Related]
18. Influence of airflow intensity on phytase production by solid-state fermentation. Rodríguez-Fernández DE; Rodríguez-León JA; de Carvalho JC; Karp SG; Sturm W; Parada JL; Soccol CR Bioresour Technol; 2012 Aug; 118():603-6. PubMed ID: 22704830 [TBL] [Abstract][Full Text] [Related]
19. Optimization of phytase production from potato waste using Aspergillus ficuum. Tian M; Yuan Q 3 Biotech; 2016 Dec; 6(2):256. PubMed ID: 28330328 [TBL] [Abstract][Full Text] [Related]
20. Monitoring fermentation parameters during phytase production in column-type bioreactor using a new data acquisition system. Spier MR; Woiciechowski AL; Letti LA; Scheidt GN; Sturm W; Rodriguez-León JA; de Carvalho JC; Dergint DE; Soccol CR Bioprocess Biosyst Eng; 2010 Nov; 33(9):1033-41. PubMed ID: 20454907 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]