BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 11420689)

  • 1. AP-1 blockade inhibits the growth of normal and malignant breast cells.
    Ludes-Meyers JH; Liu Y; Muñoz-Medellin D; Hilsenbeck SG; Brown PH
    Oncogene; 2001 May; 20(22):2771-80. PubMed ID: 11420689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. cFos is critical for MCF-7 breast cancer cell growth.
    Lu C; Shen Q; DuPré E; Kim H; Hilsenbeck S; Brown PH
    Oncogene; 2005 Sep; 24(43):6516-24. PubMed ID: 16027729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of AP-1 transcription factor causes blockade of multiple signal transduction pathways and inhibits breast cancer growth.
    Liu Y; Ludes-Meyers J; Zhang Y; Munoz-Medellin D; Kim HT; Lu C; Ge G; Schiff R; Hilsenbeck SG; Osborne CK; Brown PH
    Oncogene; 2002 Oct; 21(50):7680-9. PubMed ID: 12400010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation and inhibition of the AP-1 complex in human breast cancer cells.
    Chen TK; Smith LM; Gebhardt DK; Birrer MJ; Brown PH
    Mol Carcinog; 1996 Mar; 15(3):215-26. PubMed ID: 8597534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AP-1 blockade in breast cancer cells causes cell cycle arrest by suppressing G1 cyclin expression and reducing cyclin-dependent kinase activity.
    Liu Y; Lu C; Shen Q; Munoz-Medellin D; Kim H; Brown PH
    Oncogene; 2004 Oct; 23(50):8238-46. PubMed ID: 15378019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Breast cancer cells have lower activating protein 1 transcription factor activity than normal mammary epithelial cells.
    Smith LM; Birrer MJ; Stampfer MR; Brown PH
    Cancer Res; 1997 Jul; 57(14):3046-54. PubMed ID: 9230221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of activator protein-1 (AP-1) in induction of apoptosis by vitamin E succinate in human breast cancer cells.
    Zhao B; Yu W; Qian M; Simmons-Menchaca M; Brown P; Birrer MJ; Sanders BG; Kline K
    Mol Carcinog; 1997 Jul; 19(3):180-90. PubMed ID: 9254885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional upregulation of SPARC, in response to c-Jun overexpression, contributes to increased motility and invasion of MCF7 breast cancer cells.
    Briggs J; Chamboredon S; Castellazzi M; Kerry JA; Bos TJ
    Oncogene; 2002 Oct; 21(46):7077-91. PubMed ID: 12370830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human breast cancer cells and normal mammary epithelial cells: retinol metabolism and growth inhibition by the retinol metabolite 4-oxoretinol.
    Chen AC; Guo X; Derguini F; Gudas LJ
    Cancer Res; 1997 Oct; 57(20):4642-51. PubMed ID: 9377581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retinoic acid induces expression of the interleukin-1beta gene in cultured normal human mammary epithelial cells and in human breast carcinoma lines.
    Liu L; Gudas LJ
    J Cell Physiol; 2002 Nov; 193(2):244-52. PubMed ID: 12385002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction of human metastatic breast cancer cell aggressiveness on introduction of either form a or B of the progesterone receptor and then treatment with progestins.
    Sumida T; Itahana Y; Hamakawa H; Desprez PY
    Cancer Res; 2004 Nov; 64(21):7886-92. PubMed ID: 15520195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel signaling molecules implicated in tumor-associated fatty acid synthase-dependent breast cancer cell proliferation and survival: Role of exogenous dietary fatty acids, p53-p21WAF1/CIP1, ERK1/2 MAPK, p27KIP1, BRCA1, and NF-kappaB.
    Menendez JA; Mehmi I; Atlas E; Colomer R; Lupu R
    Int J Oncol; 2004 Mar; 24(3):591-608. PubMed ID: 14767544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein kinase C beta enhances growth and expression of cyclin D1 in human breast cancer cells.
    Li H; Weinstein IB
    Cancer Res; 2006 Dec; 66(23):11399-408. PubMed ID: 17145886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. cJun overexpression in MCF-7 breast cancer cells produces a tumorigenic, invasive and hormone resistant phenotype.
    Smith LM; Wise SC; Hendricks DT; Sabichi AL; Bos T; Reddy P; Brown PH; Birrer MJ
    Oncogene; 1999 Oct; 18(44):6063-70. PubMed ID: 10557095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complex regulation of the fibroblast growth factor-binding protein in MDA- MB-468 breast cancer cells by CCAAT/enhancer-binding protein beta.
    Kagan BL; Henke RT; Cabal-Manzano R; Stoica GE; Nguyen Q; Wellstein A; Riegel AT
    Cancer Res; 2003 Apr; 63(7):1696-705. PubMed ID: 12670924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered response to thyroid hormones by breast and ovarian cancer cells.
    Martinez MB; Ruan M; Fitzpatrick LA
    Anticancer Res; 2000; 20(6B):4141-6. PubMed ID: 11205239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Angiogenic effect of interleukin-8 in breast cancer and its association with estrogen receptor].
    Lin Y; Wang SM; Huang RP
    Zhonghua Yi Xue Za Zhi; 2005 Jun; 85(20):1419-23. PubMed ID: 16029657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of proliferation of estrogen receptor‑positive MCF‑7 human breast cancer cells by tamoxifen through c‑Jun transcription factors.
    Xu Y; Zou ST; Zhu R; Li W; Gu CW; Wei SH; Xie JM; Wu HR
    Mol Med Rep; 2013 Apr; 7(4):1283-7. PubMed ID: 23404426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. JunB negatively regulates AP-1 activity and cell proliferation of malignant mouse keratinocytes.
    Finch S; Joseloff E; Bowden T
    J Cancer Res Clin Oncol; 2002 Jan; 128(1):3-10. PubMed ID: 11862466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic manipulation of stromal cell-derived factor-1 attests the pivotal role of the autocrine SDF-1-CXCR4 pathway in the aggressiveness of breast cancer cells.
    Kang H; Mansel RE; Jiang WG
    Int J Oncol; 2005 May; 26(5):1429-34. PubMed ID: 15809737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.