These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 11421278)

  • 41. Bacterial transport of sulfate, molybdate, and related oxyanions.
    Aguilar-Barajas E; Díaz-Pérez C; Ramírez-Díaz MI; Riveros-Rosas H; Cervantes C
    Biometals; 2011 Aug; 24(4):687-707. PubMed ID: 21301930
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The MalK protein of the ATP-binding cassette transporter for maltose of Escherichia coli is accessible to protease digestion from the periplasmic side of the membrane.
    Schneider E; Hunke S; Tebbe S
    J Bacteriol; 1995 Sep; 177(18):5364-7. PubMed ID: 7665528
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molybdenum and tungsten in Campylobacter jejuni: their physiological role and identification of separate transporters regulated by a single ModE-like protein.
    Taveirne ME; Sikes ML; Olson JW
    Mol Microbiol; 2009 Nov; 74(3):758-71. PubMed ID: 19919002
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A new class of cobalamin transport mutants (btuF) provides genetic evidence for a periplasmic binding protein in Salmonella typhimurium.
    Van Bibber M; Bradbeer C; Clark N; Roth JR
    J Bacteriol; 1999 Sep; 181(17):5539-41. PubMed ID: 10464235
    [TBL] [Abstract][Full Text] [Related]  

  • 45. ABC transporters and the export of capsular polysaccharides from gram-negative bacteria.
    Silver RP; Prior K; Nsahlai C; Wright LF
    Res Microbiol; 2001; 152(3-4):357-64. PubMed ID: 11421283
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Actinobacillus utilizes a binding protein-dependent ABC transporter to acquire the active form of vitamin B
    Pan C; Zimmer A; Shah M; Huynh MS; Lai CC; Sit B; Hooda Y; Curran DM; Moraes TF
    J Biol Chem; 2021 Sep; 297(3):101046. PubMed ID: 34358566
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Acquisition and role of molybdate in Pseudomonas aeruginosa.
    Pederick VG; Eijkelkamp BA; Ween MP; Begg SL; Paton JC; McDevitt CA
    Appl Environ Microbiol; 2014 Nov; 80(21):6843-52. PubMed ID: 25172858
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Maltose transport system of Escherichia coli: an ABC-type transporter.
    Nikaido H
    FEBS Lett; 1994 Jun; 346(1):55-8. PubMed ID: 8206159
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Functional characterization of the Bradyrhizobium japonicum modA and modB genes involved in molybdenum transport.
    Delgado MJ; Tresierra-Ayala A; Talbi C; Bedmar EJ
    Microbiology (Reading); 2006 Jan; 152(Pt 1):199-207. PubMed ID: 16385130
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterisation of the molybdenum-responsive ModE regulatory protein and its binding to the promoter region of the modABCD (molybdenum transport) operon of Escherichia coli.
    Anderson LA; Palmer T; Price NC; Bornemann S; Boxer DH; Pau RN
    Eur J Biochem; 1997 May; 246(1):119-26. PubMed ID: 9210473
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Functional exchangeability of the ABC proteins of the periplasmic binding protein-dependent transport systems Ugp and Mal of Escherichia coli.
    Hekstra D; Tommassen J
    J Bacteriol; 1993 Oct; 175(20):6546-52. PubMed ID: 8407831
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Escherichia coli modE gene: effect of modE mutations on molybdate dependent modA expression.
    McNicholas PM; Chiang RC; Gunsalus RP
    FEMS Microbiol Lett; 1996 Nov; 145(1):117-23. PubMed ID: 8931336
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Polyamine uptake systems in Escherichia coli.
    Igarashi K; Ito K; Kashiwagi K
    Res Microbiol; 2001; 152(3-4):271-8. PubMed ID: 11421274
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Solution NMR chemical shift assignment of apo and molybdate-bound ModA at two pHs.
    Nguyen HL; Crowhurst KA
    Biomol NMR Assign; 2024 Jun; 18(1):93-98. PubMed ID: 38642264
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The phosphate-binding protein of Escherichia coli is not essential for P(i)-regulated expression of the pho regulon.
    Hoffer SM; Tommassen J
    J Bacteriol; 2001 Oct; 183(19):5768-71. PubMed ID: 11544243
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Classification of a Haemophilus influenzae ABC transporter HI1470/71 through its cognate molybdate periplasmic binding protein, MolA.
    Tirado-Lee L; Lee A; Rees DC; Pinkett HW
    Structure; 2011 Nov; 19(11):1701-10. PubMed ID: 22078568
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sulfate and thiosulfate transport in Escherichia coli K-12: evidence for a functional overlapping of sulfate- and thiosulfate-binding proteins.
    Sirko A; Zatyka M; Sadowy E; Hulanicka D
    J Bacteriol; 1995 Jul; 177(14):4134-6. PubMed ID: 7608089
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Binding protein-dependent ABC transport system for glycerol 3-phosphate of Escherichia coli.
    Boos W
    Methods Enzymol; 1998; 292():40-51. PubMed ID: 9711545
    [No Abstract]   [Full Text] [Related]  

  • 59. A new family of transcriptional regulators of tungstoenzymes and molybdate/tungstate transport.
    Rajeev L; Garber ME; Zane GM; Price MN; Dubchak I; Wall JD; Novichkov PS; Mukhopadhyay A; Kazakov AE
    Environ Microbiol; 2019 Feb; 21(2):784-799. PubMed ID: 30536693
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Associative properties of the Escherichia coli galactose binding protein and maltose binding protein.
    Richarme G
    Biochem Biophys Res Commun; 1982 Mar; 105(2):476-81. PubMed ID: 7046749
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.