These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 11421465)
1. Self-organization of local cortical circuits and cortical orientation maps: a nonlinear Hebbian model of the visual cortex with adaptive lateral couplings. Burger T; Lang EW Z Naturforsch C J Biosci; 2001; 56(5-6):464-78. PubMed ID: 11421465 [TBL] [Abstract][Full Text] [Related]
2. An incremental Hebbian learning model of the primary visual cortex with lateral plasticity and real input patterns. Burger T; Lang EW Z Naturforsch C J Biosci; 1999; 54(1-2):128-40. PubMed ID: 10097413 [TBL] [Abstract][Full Text] [Related]
3. Relation between retinotopical and orientation maps in visual cortex. Ernst U; Pawelzik K; Tsodyks M; Sejnowski TJ Neural Comput; 1999 Feb; 11(2):375-9. PubMed ID: 9950736 [TBL] [Abstract][Full Text] [Related]
4. Interlayer Repulsion of Retinal Ganglion Cell Mosaics Regulates Spatial Organization of Functional Maps in the Visual Cortex. Jang J; Paik SB J Neurosci; 2017 Dec; 37(50):12141-12152. PubMed ID: 29114075 [TBL] [Abstract][Full Text] [Related]
5. Maps in the brain: what can we learn from them? Chklovskii DB; Koulakov AA Annu Rev Neurosci; 2004; 27():369-92. PubMed ID: 15217337 [TBL] [Abstract][Full Text] [Related]
6. Imprecise correlated activity in self-organizing maps of spiking neurons. Veredas FJ; Mesa H; Martínez LA Neural Netw; 2008 Aug; 21(6):810-6. PubMed ID: 18662853 [TBL] [Abstract][Full Text] [Related]
7. Topographic receptive fields and patterned lateral interaction in a self-organizing model of the primary visual cortex. Sirosh J; Miikkulainen R Neural Comput; 1997 Apr; 9(3):577-94. PubMed ID: 9097475 [TBL] [Abstract][Full Text] [Related]
8. Specificity and randomness in the visual cortex. Ohki K; Reid RC Curr Opin Neurobiol; 2007 Aug; 17(4):401-7. PubMed ID: 17720489 [TBL] [Abstract][Full Text] [Related]
9. A computer model of the visual cortex. Fehér O; Virág T Neurobiology (Bp); 1996; 4(1-2):13-26. PubMed ID: 9116691 [TBL] [Abstract][Full Text] [Related]
14. Mechanisms for stable, robust, and adaptive development of orientation maps in the primary visual cortex. Stevens JL; Law JS; Antolík J; Bednar JA J Neurosci; 2013 Oct; 33(40):15747-66. PubMed ID: 24089483 [TBL] [Abstract][Full Text] [Related]
15. How the retinal network reacts to epiretinal stimulation to form the prosthetic visual input to the cortex. Cottaris NP; Elfar SD J Neural Eng; 2005 Mar; 2(1):S74-90. PubMed ID: 15876658 [TBL] [Abstract][Full Text] [Related]
17. Random Wiring, Ganglion Cell Mosaics, and the Functional Architecture of the Visual Cortex. Schottdorf M; Keil W; Coppola D; White LE; Wolf F PLoS Comput Biol; 2015 Nov; 11(11):e1004602. PubMed ID: 26575467 [TBL] [Abstract][Full Text] [Related]
18. Establishment of a scaffold for orientation maps in primary visual cortex of higher mammals. Grabska-Barwinska A; von der Malsburg C J Neurosci; 2008 Jan; 28(1):249-57. PubMed ID: 18171942 [TBL] [Abstract][Full Text] [Related]
19. Projection of Orthogonal Tiling from the Retina to the Visual Cortex. Song M; Jang J; Kim G; Paik SB Cell Rep; 2021 Jan; 34(1):108581. PubMed ID: 33406438 [TBL] [Abstract][Full Text] [Related]
20. Neural circuit models for computations in early visual cortex. Zhaoping L Curr Opin Neurobiol; 2011 Oct; 21(5):808-15. PubMed ID: 21873046 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]