BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

438 related articles for article (PubMed ID: 11421597)

  • 21. Effect of chronic pre-treatment with angiotensin converting enzyme inhibition on skeletal muscle mitochondrial recovery after ischemia/reperfusion.
    Thaveau F; Zoll J; Bouitbir J; N'guessan B; Plobner P; Chakfe N; Kretz JG; Richard R; Piquard F; Geny B
    Fundam Clin Pharmacol; 2010 Jun; 24(3):333-40. PubMed ID: 19682081
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Skeletal muscle tissue oxygen pressure distribution during early reperfusion after prolonged ischaemia.
    Gustafsson U; Gidlöf A; Povlsen B; Sirsjö A
    Eur J Vasc Endovasc Surg; 1999 Jan; 17(1):41-6. PubMed ID: 10071616
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Local administration of the Poly ADP-Ribose Polymerase (PARP) inhibitor, PJ34 during hindlimb ischemia modulates skeletal muscle reperfusion injury.
    Conrad MF; Albadawi H; Stone DH; Crawford RS; Entabi F; Watkins MT
    J Surg Res; 2006 Oct; 135(2):233-7. PubMed ID: 16872633
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Viability of ischemia/reperfused muscles in rat: a new evaluation method by RNA degradation.
    Akahane M; Ono H; Ohgushi H; Tamai S
    J Orthop Res; 2001 Jul; 19(4):559-64. PubMed ID: 11518262
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Real-time monitoring of nitric oxide and blood flow during ischemia-reperfusion in the rat testis.
    Kono T; Saito M; Kinoshita Y; Satoh I; Shinbori C; Satoh K
    Mol Cell Biochem; 2006 Jun; 286(1-2):139-45. PubMed ID: 16496212
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glycine preserves function and decreases necrosis in skeletal muscle undergoing ischemia and reperfusion injury.
    Ascher E; Hanson JN; Cheng W; Hingorani A; Scheinman M
    Surgery; 2001 Feb; 129(2):231-5. PubMed ID: 11174716
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acute remote ischemic preconditioning II: the role of nitric oxide.
    Küntscher MV; Kastell T; Altmann J; Menke H; Gebhard MM; Germann G
    Microsurgery; 2002; 22(6):227-31. PubMed ID: 12375287
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of cold ischemia on reflow patterns in the rat cremaster muscle microcirculation.
    Beris AE; Soucacos PN; Seaber AV; Urbaniak JR
    Int Angiol; 1995 Sep; 14(3):248-52. PubMed ID: 8919245
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antithrombin III pretreatment reduces neutrophil recruitment into the lung and skeletal muscle tissues in the rat model of bilateral lower limb ischemia and reperfusion: a pilot study.
    Duru S; Koca U; Oztekin S; Olguner C; Kar A; Coker C; Ulukuş C; Taşcł C; Elar Z
    Acta Anaesthesiol Scand; 2005 Sep; 49(8):1142-8. PubMed ID: 16095456
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Addition of tanshinone IIA to UW solution decreases skeletal muscle ischemia-reperfusion injury.
    Wang HG; Li ZY; Liu XL
    Acta Pharmacol Sin; 2006 Aug; 27(8):991-9. PubMed ID: 16867249
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of pretreatment with ischaemic preconditioning or cromakalim on perfusion in skeletal muscle during ischaemia-reperfusion injury.
    Seifalian AM; Chaloupka K; Lohn JW; Gürke L; Heberer M; Hamilton G
    Int Angiol; 2001 Jun; 20(2):174-80. PubMed ID: 11533526
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Caffeic acid phenethyl ester (CAPE) protects rat skeletal muscle against ischemia-reperfusion-induced oxidative stress.
    Ozyurt H; Ozyurt B; Koca K; Ozgocmen S
    Vascul Pharmacol; 2007; 47(2-3):108-12. PubMed ID: 17543587
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of fibrinolysis during reperfusion of ischemic skeletal muscle.
    Quiñones-Baldrich WJ
    Microcirc Endothelium Lymphatics; 1989; 5(3-5):299-314. PubMed ID: 2637946
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Do prostaglandins have a salutary role in skeletal muscle ischaemia-reperfusion injury?
    Rowlands TE; Gough MJ; Homer-Vanniasinkam S
    Eur J Vasc Endovasc Surg; 1999 Nov; 18(5):439-44. PubMed ID: 10610833
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hindlimb claudication reflects impaired nitric oxide-dependent revascularization after ischemia.
    Luque Contreras D; Jiménez Estrada I; Martínez Fong D; Segura B; Guadarrama JC; Paniagua Sierra R; Vargas Robles H; Rios A; Escalante B
    Vascul Pharmacol; 2007 Jan; 46(1):10-5. PubMed ID: 17011243
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Indicators of oxidative injury and alterations of the cell membrane in the skeletal muscle of rats submitted to ischemia and reperfusion.
    Grisotto PC; dos Santos AC; Coutinho-Netto J; Cherri J; Piccinato CE
    J Surg Res; 2000 Jul; 92(1):1-6. PubMed ID: 10864473
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Leukocyte activity and tissue injury following ischemia-reperfusion in skeletal muscle.
    Forbes TL; Harris KA; Jamieson WG; DeRose G; Carson M; Potter RF
    Microvasc Res; 1996 May; 51(3):275-87. PubMed ID: 8992228
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of dexamethasone on the contractile function of reperfused skeletal muscle.
    Chen LE; Silver WP; Seaber AV; Korompilias AV; Urbaniak JR
    Microsurgery; 1996; 17(6):313-20. PubMed ID: 9308715
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The dual effects of nitric oxide synthase inhibitors on ischemia-reperfusion injury in rat hearts.
    Kobara M; Tatsumi T; Takeda M; Mano A; Yamanaka S; Shiraishi J; Keira N; Matoba S; Asayama J; Nakagawa M
    Basic Res Cardiol; 2003 Sep; 98(5):319-28. PubMed ID: 12955405
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional outcome of new blood vessel growth into ischemic skeletal muscle.
    Lee SL; Pevec WC; Carlsen RC
    J Vasc Surg; 2001 Dec; 34(6):1096-102. PubMed ID: 11743567
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.