BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

450 related articles for article (PubMed ID: 11423135)

  • 1. Cell-wall architecture and lignin composition of wheat developed in a microgravity environment.
    Levine LH; Heyenga AG; Levine HG; Choi J; Davin LB; Krikorian AD; Lewis NG
    Phytochemistry; 2001 Jul; 57(6):835-46. PubMed ID: 11423135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of peg formation in cucumber seedlings grown on clinostats and in a microgravity (space) environment.
    Link BM; Cosgrove DJ
    J Plant Res; 1999 Dec; 112(1108):507-16. PubMed ID: 11543180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of Hydroxycinnamate Network Formation in Cell Walls of Rice Shoots Grown under Microgravity Conditions in Space.
    Wakabayashi K; Soga K; Hoson T; Kotake T; Yamazaki T; Higashibata A; Ishioka N; Shimazu T; Fukui K; Osada I; Kasahara H; Kamada M
    PLoS One; 2015; 10(9):e0137992. PubMed ID: 26378793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The actin cytoskeleton is a suppressor of the endogenous skewing behaviour of Arabidopsis primary roots in microgravity.
    Nakashima J; Liao F; Sparks JA; Tang Y; Blancaflor EB
    Plant Biol (Stuttg); 2014 Jan; 16 Suppl 1():142-50. PubMed ID: 23952736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence of root zone hypoxia in Brassica rapa L. grown in microgravity.
    Stout SC; Porterfield DM; Briarty LG; Kuang A; Musgrave ME
    Int J Plant Sci; 2001 Mar; 162(2):249-55. PubMed ID: 11725801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative floral development of Mir-grown and ethylene-treated, earth-grown Super Dwarf wheat.
    Campbell WF; Salisbury FB; Bugbee B; Klassen S; Naegle E; Strickland DT; Bingham GE; Levinskikh M; Iljina GM; Veselova TD; Sytchev VN; Podolsky I; McManus WR; Bubenheim DL; Stieber J; Jahns G
    J Plant Physiol; 2001 Aug; 158(8):1051-60. PubMed ID: 12033229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microgravity and clinorotation cause redistribution of free calcium in sweet clover columella cells.
    Hilaire E; Paulsen AQ; Brown CS; Guikema JA
    Plant Cell Physiol; 1995 Jul; 36(5):831-7. PubMed ID: 11536706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induced compression wood formation in Douglas fir (Pseudotsuga menziesii) in microgravity.
    Kwon M; Bedgar DL; Piastuch W; Davin LB; Lewis NG
    Phytochemistry; 2001 Jul; 57(6):847-57. PubMed ID: 11423136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seedling growth and development on space shuttle.
    Cowles J; LeMay R; Jahns G
    Adv Space Res; 1994 Nov; 14(11):3-12. PubMed ID: 11540197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of a microgravity (space) environment on the expression of expansins from the peg and root tissues of Cucumis sativus.
    Link BM; Wagner ER; Cosgrove DJ
    Physiol Plant; 2001 Oct; 113(2):292-300. PubMed ID: 11710397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graviperception of lentil seedling roots grown in space (Spacelab D1 Mission).
    Perbal G; Driss-Ecole D; Rutin J; Salle G
    Physiol Plant; 1987; 70():119-26. PubMed ID: 11539054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Texture of cellulose microfibrils of root hair cell walls of Arabidopsis thaliana, Medicago truncatula, and Vicia sativa.
    Akkerman M; Franssen-Verheijen MA; Immerzeel P; Hollander LD; Schel JH; Emons AM
    J Microsc; 2012 Jul; 247(1):60-7. PubMed ID: 22458271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on the growth and indole-3-acetic acid and abscisic acid content of Zea mays seedlings grown in microgravity.
    Schulze A; Jensen PJ; Desrosiers M; Buta JG; Bandurski RS
    Plant Physiol; 1992; 100(2):692-8. PubMed ID: 11537869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microgravity effects on leaf morphology, cell structure, carbon metabolism and mRNA expression of dwarf wheat.
    Stutte GW; Monje O; Hatfield RD; Paul AL; Ferl RJ; Simone CG
    Planta; 2006 Oct; 224(5):1038-49. PubMed ID: 16708225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microgravity effects on plant growth and lignification.
    Cowles JR; Lemay R; Jahns G
    Astrophys Lett Commun; 1988; 27():223-8. PubMed ID: 11539286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cortical microtubules in sweet clover columella cells developed in microgravity.
    Hilaire E; Paulsen AQ; Brown CS; Guikema JA
    Plant Cell Physiol; 1995 Oct; 36(7):1387-92. PubMed ID: 11536715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytological and ultrastructural studies on root tissues.
    Slocum RD; Gaynor JJ; Galston AW
    Ann Bot; 1984 Nov; 54(Suppl 3):65-76. PubMed ID: 11538824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth and development, and auxin polar transport in higher plants under microgravity conditions in space: BRIC-AUX on STS-95 space experiment.
    Ueda J; Miyamoto K; Yuda T; Hoshino T; Fujii S; Mukai C; Kamigaichi S; Aizawa S; Yoshizaki I; Shimazu T; Fukui K
    J Plant Res; 1999 Dec; 112(1108):487-92. PubMed ID: 11543177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polarity of statocytes in lentil seedling roots grown in space (Spacelab D1 Mission).
    Perbal G; Driss-Ecole D
    Physiol Plant; 1989 Apr; 75(4):518-24. PubMed ID: 11541142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of microgravity on the structure and function of plant cell walls.
    Nedukha EM
    Int Rev Cytol; 1997; 170():39-77. PubMed ID: 11536785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.