BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 11423394)

  • 1. Membrane-initiated Ca(2+) signals are reshaped during propagation to subcellular regions.
    Koopman WJ; Scheenen WJ; Errington RJ; Willems PH; Bindels RJ; Roubos EW; Jenks BG
    Biophys J; 2001 Jul; 81(1):57-65. PubMed ID: 11423394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence that Ca2+-waves in Xenopus melanotropes depend on calcium-induced calcium release: a fluorescence correlation microscopy and linescanning study.
    Koopman WJ; Hink MA; Visser AJ; Roubos EW; Jenks BG
    Cell Calcium; 1999; 26(1-2):59-67. PubMed ID: 10892571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subcellular organization of agonist-evoked Ca(2+) waves in the blowfly salivary gland.
    Zimmermann B
    Cell Calcium; 2000 May; 27(5):297-307. PubMed ID: 10859596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resolution of cAMP signals in three-dimensional microdomains using novel, real-time sensors.
    Karpen JW; Rich TC
    Proc West Pharmacol Soc; 2004; 47():1-5. PubMed ID: 15633600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amplitude modulation of nuclear Ca2+ signals in human skeletal myotubes: a possible role for nuclear Ca2+ buffering.
    Koopman WJ; Willems PH; Oosterhof A; van Kuppevelt TH; Gielen SC
    Cell Calcium; 2005 Aug; 38(2):141-52. PubMed ID: 16054687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ca2+ release dynamics in parotid and pancreatic exocrine acinar cells evoked by spatially limited flash photolysis.
    Won JH; Cottrell WJ; Foster TH; Yule DI
    Am J Physiol Gastrointest Liver Physiol; 2007 Dec; 293(6):G1166-77. PubMed ID: 17901163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct intracellular calcium profiles following influx through N- versus L-type calcium channels: role of Ca2+-induced Ca2+ release.
    Tully K; Treistman SN
    J Neurophysiol; 2004 Jul; 92(1):135-43. PubMed ID: 14999048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-range intercellular calcium signaling in bone.
    Jørgensen NR
    APMIS Suppl; 2005; (118):5-36. PubMed ID: 16279161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium channel kinetics of melanotrope cells in Xenopus laevis depend on environmental stimulation.
    Zhang H; Langeslag M; Breukels V; Jenks BG; Roubos EW; Scheenen WJ
    Gen Comp Endocrinol; 2008 Mar; 156(1):104-12. PubMed ID: 18206885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amplification and propagation of pacemaker Ca2+ signals by cyclic ADP-ribose and the type 3 ryanodine receptor in T cells.
    Kunerth S; Langhorst MF; Schwarzmann N; Gu X; Huang L; Yang Z; Zhang L; Mills SJ; Zhang LH; Potter BV; Guse AH
    J Cell Sci; 2004 Apr; 117(Pt 10):2141-9. PubMed ID: 15054112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutamate pretreatment affects Ca2+ signaling in processes of astrocyte pairs.
    Padmashri R; Sikdar SK
    J Neurochem; 2007 Jan; 100(1):105-17. PubMed ID: 17059561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localized calcium signals along the cleavage furrow of the Xenopus egg are not involved in cytokinesis.
    Noguchi T; Mabuchi I
    Mol Biol Cell; 2002 Apr; 13(4):1263-73. PubMed ID: 11950937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular-free calcium dynamics and F-actin alteration in the formation of macrophage foam cells.
    Deng TL; Yu L; Ge YK; Zhang L; Zheng XX
    Biochem Biophys Res Commun; 2005 Dec; 338(2):748-56. PubMed ID: 16242664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of muscarinic cationic current in myocytes from guinea-pig ileum by intracellular Ca2+ release: a central role of inositol 1,4,5-trisphosphate receptors.
    Gordienko DV; Zholos AV
    Cell Calcium; 2004 Nov; 36(5):367-86. PubMed ID: 15451621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Confocal imaging of subcellular Ca2+ concentrations using a dual-excitation ratiometric indicator based on green fluorescent protein.
    Shimozono S; Fukano T; Nagai T; Kirino Y; Mizuno H; Miyawaki A
    Sci STKE; 2002 Mar; 2002(125):pl4. PubMed ID: 11917155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium influx through voltage-operated calcium channels is required for proopiomelanocortin protein expression in Xenopus melanotropes.
    van den Hurk MJ; Scheenen WJ; Roubos EW; Jenks BG
    Ann N Y Acad Sci; 2005 Apr; 1040():494-7. PubMed ID: 15891099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of local strain on cell membrane at initiation point of calcium signaling response to applied mechanical stimulus in osteoblastic cells.
    Sato K; Adachi T; Ueda D; Hojo M; Tomita Y
    J Biomech; 2007; 40(6):1246-55. PubMed ID: 16887125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TNFR1-induced sphingomyelinase activation modulates TCR signaling by impairing store-operated Ca2+ influx.
    Church LD; Hessler G; Goodall JE; Rider DA; Workman CJ; Vignali DA; Bacon PA; Gulbins E; Young SP
    J Leukoc Biol; 2005 Jul; 78(1):266-78. PubMed ID: 15817701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Receptor-regulated dynamic interaction between endothelial nitric oxide synthase and calmodulin revealed by fluorescence resonance energy transfer in living cells.
    Jobin CM; Chen H; Lin AJ; Yacono PW; Igarashi J; Michel T; Golan DE
    Biochemistry; 2003 Oct; 42(40):11716-25. PubMed ID: 14529282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manganese suppresses ATP-dependent intercellular calcium waves in astrocyte networks through alteration of mitochondrial and endoplasmic reticulum calcium dynamics.
    Tjalkens RB; Zoran MJ; Mohl B; Barhoumi R
    Brain Res; 2006 Oct; 1113(1):210-9. PubMed ID: 16934782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.