These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 11423430)

  • 1. HIV-1 integrase catalytic core: molecular dynamics and simulated fluorescence decays.
    Laboulais C; Deprez E; Leh H; Mouscadet JF; Brochon JC; Le Bret M
    Biophys J; 2001 Jul; 81(1):473-89. PubMed ID: 11423430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-scale conformational dynamics of the HIV-1 integrase core domain and its catalytic loop mutants.
    Lee MC; Deng J; Briggs JM; Duan Y
    Biophys J; 2005 May; 88(5):3133-46. PubMed ID: 15731379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oligomeric states of the HIV-1 integrase as measured by time-resolved fluorescence anisotropy.
    Deprez E; Tauc P; Leh H; Mouscadet JF; Auclair C; Brochon JC
    Biochemistry; 2000 Aug; 39(31):9275-84. PubMed ID: 10924120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics studies on the HIV-1 integrase catalytic domain.
    Lins RD; Briggs JM; Straatsma TP; Carlson HA; Greenwald J; Choe S; McCammon JA
    Biophys J; 1999 Jun; 76(6):2999-3011. PubMed ID: 10354426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced HIV-1 integrase flexibility as a mechanism for raltegravir resistance.
    Dewdney TG; Wang Y; Kovari IA; Reiter SJ; Kovari LC
    J Struct Biol; 2013 Nov; 184(2):245-50. PubMed ID: 23891838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA binding induces dissociation of the multimeric form of HIV-1 integrase: a time-resolved fluorescence anisotropy study.
    Deprez E; Tauc P; Leh H; Mouscadet JF; Auclair C; Hawkins ME; Brochon JC
    Proc Natl Acad Sci U S A; 2001 Aug; 98(18):10090-5. PubMed ID: 11504911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics simulations of the HIV-1 integrase dimerization interface: guidelines for the design of a novel class of integrase inhibitors.
    Sippel M; Sotriffer CA
    J Chem Inf Model; 2010 Apr; 50(4):604-14. PubMed ID: 20230013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time monitoring of disintegration activity of catalytic core domain of HIV-1 integrase using molecular beacon.
    Zhang DW; Zhao MM; He HQ; Guo SX
    Anal Biochem; 2013 Sep; 440(2):120-2. PubMed ID: 23747532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Similarities in the HIV-1 and ASV integrase active sites upon metal cofactor binding.
    Lins RD; Straatsma TP; Briggs JM
    Biopolymers; 2000 Apr; 53(4):308-15. PubMed ID: 10685051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Communications: Electron polarization critically stabilizes the Mg2+ complex in the catalytic core domain of HIV-1 integrase.
    Lu Y; Mei Y; Zhang JZ; Zhang D
    J Chem Phys; 2010 Apr; 132(13):131101. PubMed ID: 20387913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and dynamical properties of a full-length HIV-1 integrase: molecular dynamics simulations.
    Wijitkosoom A; Tonmunphean S; Truong TN; Hannongbua S
    J Biomol Struct Dyn; 2006 Jun; 23(6):613-24. PubMed ID: 16615807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation on the sucrose binding pocket of HIV-1 Integrase by molecular dynamics and synergy experiments.
    Tintori C; Esposito F; Morreale F; Martini R; Tramontano E; Botta M
    Bioorg Med Chem Lett; 2015 Aug; 25(15):3013-6. PubMed ID: 26048795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling HIV-1 integrase complexes based on their hydrodynamic properties.
    Podtelezhnikov AA; Gao K; Bushman FD; McCammon JA
    Biopolymers; 2003 Jan; 68(1):110-20. PubMed ID: 12579583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hamming distance geometry of a protein conformational space: application to the clustering of a 4-ns molecular dynamics trajectory of the HIV-1 integrase catalytic core.
    Laboulais C; Ouali M; Le Bret M; Gabarro-Arpa J
    Proteins; 2002 May; 47(2):169-79. PubMed ID: 11933064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The slow folding reaction of barstar: the core tryptophan region attains tight packing before substantial secondary and tertiary structure formation and final compaction of the polypeptide chain.
    Sridevi K; Juneja J; Bhuyan AK; Krishnamoorthy G; Udgaonkar JB
    J Mol Biol; 2000 Sep; 302(2):479-95. PubMed ID: 10970747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulations of fluorescence polarization of tryptophans in myoglobin.
    Henry ER; Hochstrasser RM
    Proc Natl Acad Sci U S A; 1987 Sep; 84(17):6142-6. PubMed ID: 3476936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative molecular dynamics simulations of HIV-1 integrase and the T66I/M154I mutant: binding modes and drug resistance to a diketo acid inhibitor.
    Brigo A; Lee KW; Fogolari F; Mustata GI; Briggs JM
    Proteins; 2005 Jun; 59(4):723-41. PubMed ID: 15815973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constructing HIV-1 integrase tetramer and exploring influences of metal ions on forming integrase-DNA complex.
    Wang LD; Liu CL; Chen WZ; Wang CX
    Biochem Biophys Res Commun; 2005 Nov; 337(1):313-9. PubMed ID: 16188234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunosuppressor binding to the immunophilin FKBP59 affects the local structural dynamics of a surface beta-strand: time-resolved fluorescence study.
    Rouviere N; Vincent M; Craescu CT; Gallay J
    Biochemistry; 1997 Jun; 36(24):7339-52. PubMed ID: 9200682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structures of novel allosteric peptide inhibitors of HIV integrase identify new interactions at the LEDGF binding site.
    Rhodes DI; Peat TS; Vandegraaff N; Jeevarajah D; Newman J; Martyn J; Coates JA; Ede NJ; Rea P; Deadman JJ
    Chembiochem; 2011 Oct; 12(15):2311-5. PubMed ID: 21850718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.