These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 11423572)

  • 101. Long-term gene therapy with thrombospondin 2 inhibits TGF-β activation, inflammation and angiogenesis in chronic allograft nephropathy.
    Daniel C; Vogelbacher R; Stief A; Grigo C; Hugo C
    PLoS One; 2013; 8(12):e83846. PubMed ID: 24376766
    [TBL] [Abstract][Full Text] [Related]  

  • 102. The role of angiopoietin-1 and thrombospondin-1 in the kidney of rats subject to 5/6 nephrectomy.
    Yang X; Liu L
    J Huazhong Univ Sci Technolog Med Sci; 2009 Oct; 29(5):557-62. PubMed ID: 19821086
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Role of renal microcirculation in experimental renovascular disease.
    Iliescu R; Fernandez SR; Kelsen S; Maric C; Chade AR
    Nephrol Dial Transplant; 2010 Apr; 25(4):1079-87. PubMed ID: 19934087
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Mitochondrial damage-induced impairment of angiogenesis in the aging rat kidney.
    Satoh M; Fujimoto S; Horike H; Ozeki M; Nagasu H; Tomita N; Sasaki T; Kashihara N
    Lab Invest; 2011 Feb; 91(2):190-202. PubMed ID: 20921951
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Angiostatin overexpression is associated with an improvement in chronic kidney injury by an anti-inflammatory mechanism.
    Mu W; Long DA; Ouyang X; Agarwal A; Cruz PE; Roncal CA; Nakagawa T; Yu X; Hauswirth WW; Johnson RJ
    Am J Physiol Renal Physiol; 2009 Jan; 296(1):F145-52. PubMed ID: 18971211
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Renovascular disease, microcirculation, and the progression of renal injury: role of angiogenesis.
    Chade AR
    Am J Physiol Regul Integr Comp Physiol; 2011 Apr; 300(4):R783-90. PubMed ID: 21307362
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Angiogenesis and hypoxia in the kidney.
    Tanaka T; Nangaku M
    Nat Rev Nephrol; 2013 Apr; 9(4):211-22. PubMed ID: 23458926
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Reversal of renal dysfunction by targeted administration of VEGF into the stenotic kidney: a novel potential therapeutic approach.
    Chade AR; Kelsen S
    Am J Physiol Renal Physiol; 2012 May; 302(10):F1342-50. PubMed ID: 22357917
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Microvascular remodeling and altered angiogenic signaling in human kidneys distal to occlusive atherosclerotic renal artery stenosis.
    Klomjit N; Zhu XY; Eirin A; Pawar AS; Conley SM; Puranik AS; Ferguson CM; Kim SR; Tang H; Jordan KL; Saadiq IM; Lerman A; Grande JP; Textor SC; Lerman LO
    Nephrol Dial Transplant; 2022 Sep; 37(10):1844-1856. PubMed ID: 35451482
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Recovery of Renal Function following Kidney-Specific VEGF Therapy in Experimental Renovascular Disease.
    Engel JE; Williams ML; Williams E; Azar C; Taylor EB; Bidwell GL; Chade AR
    Am J Nephrol; 2020; 51(11):891-902. PubMed ID: 33130676
    [TBL] [Abstract][Full Text] [Related]  

  • 111. The vascular permeabilizing factors histamine and serotonin induce angiogenesis through TR3/Nur77 and subsequently truncate it through thrombospondin-1.
    Qin L; Zhao D; Xu J; Ren X; Terwilliger EF; Parangi S; Lawler J; Dvorak HF; Zeng H
    Blood; 2013 Mar; 121(11):2154-64. PubMed ID: 23315169
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Thrombospondin-1 inhibits VEGF levels in the ovary directly by binding and internalization via the low density lipoprotein receptor-related protein-1 (LRP-1).
    Greenaway J; Lawler J; Moorehead R; Bornstein P; Lamarre J; Petrik J
    J Cell Physiol; 2007 Mar; 210(3):807-18. PubMed ID: 17154366
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Role of VEGF in maintaining renal structure and function under normotensive and hypertensive conditions.
    Advani A; Kelly DJ; Advani SL; Cox AJ; Thai K; Zhang Y; White KE; Gow RM; Marshall SM; Steer BM; Marsden PA; Rakoczy PE; Gilbert RE
    Proc Natl Acad Sci U S A; 2007 Sep; 104(36):14448-53. PubMed ID: 17726104
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Targeted VEGF (Vascular Endothelial Growth Factor) Therapy Induces Long-Term Renal Recovery in Chronic Kidney Disease via Macrophage Polarization.
    Engel JE; Williams E; Williams ML; Bidwell GL; Chade AR
    Hypertension; 2019 Nov; 74(5):1113-1123. PubMed ID: 31542966
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Chronic VEGF blockade worsens glomerular injury in the remnant kidney model.
    Machado FG; Kuriki PS; Fujihara CK; Fanelli C; Arias SC; Malheiros DM; Camara NO; Zatz R
    PLoS One; 2012; 7(6):e39580. PubMed ID: 22745791
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Vascular endothelial growth factor-A, matrix metalloproteinase-1, and macrophage migration inhibition factor changes in the porcine remnant kidney model: evaluation by magnetic resonance imaging.
    Misra S; Misra KD; Glockner JF
    J Vasc Interv Radiol; 2010 Jul; 21(7):1071-7. PubMed ID: 20610182
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Low-protein diet supplemented with ketoacids reduces the severity of renal disease in 5/6 nephrectomized rats: a role for KLF15.
    Gao X; Huang L; Grosjean F; Esposito V; Wu J; Fu L; Hu H; Tan J; He C; Gray S; Jain MK; Zheng F; Mei C
    Kidney Int; 2011 May; 79(9):987-96. PubMed ID: 21248717
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Comparison of the surgical resection and infarct 5/6 nephrectomy rat models of chronic kidney disease.
    Adam RJ; Williams AC; Kriegel AJ
    Am J Physiol Renal Physiol; 2022 Jun; 322(6):F639-F654. PubMed ID: 35379002
    [TBL] [Abstract][Full Text] [Related]  

  • 119. From Proteinuria to Fibrosis: An Update on Pathophysiology and Treatment Options.
    Sharma S; Smyth B
    Kidney Blood Press Res; 2021; 46(4):411-420. PubMed ID: 34130301
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Low proliferative potential and impaired angiogenesis of cultured rat kidney endothelial cells.
    Basile DP; Zeng P; Friedrich JL; Leonard EC; Yoder MC
    Microcirculation; 2012 Oct; 19(7):598-609. PubMed ID: 22612333
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.