BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 11423725)

  • 21. Exposure to ochratoxin A impairs organic anion transport in proximal-tubule-derived opossum kidney cells.
    Sauvant C; Silbernagl S; Gekle M
    J Pharmacol Exp Ther; 1998 Oct; 287(1):13-20. PubMed ID: 9765316
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adaptation of Opossum Kidney Cells to Luminal Phosphate: Effects of Phosphonoformic Acid and Kinase Inhibitors.
    Thomas L; Wagner CA; Biber J; Hernando N
    Kidney Blood Press Res; 2016; 41(3):298-310. PubMed ID: 27165344
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adaptation to phosphate depletion in opossum kidney cells.
    Saxena S; Dansby L; Allon M
    Biochem Biophys Res Commun; 1995 Nov; 216(1):141-7. PubMed ID: 7488080
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of microtubules in the rapid regulation of renal phosphate transport in response to acute alterations in dietary phosphate content.
    Lötscher M; Kaissling B; Biber J; Murer H; Levi M
    J Clin Invest; 1997 Mar; 99(6):1302-12. PubMed ID: 9077540
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of lipid peroxidation and poly(ADP-ribose) polymerase activation in oxidant-induced membrane transport dysfunction in opossum kidney cells.
    Min SK; Kim SY; Kim CH; Woo JS; Jung JS; Kim YK
    Toxicol Appl Pharmacol; 2000 Aug; 166(3):196-202. PubMed ID: 10906283
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transport of levofloxacin in the OK kidney epithelial cell line: interaction with p-aminohippurate transport.
    Matsuo Y; Yano I; Habu Y; Katsura T; Hashimoto Y; Inui K
    Pharm Res; 2001 May; 18(5):573-8. PubMed ID: 11465410
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adaptation of phosphate transport in phosphate-deprived LLC-PK1 cells.
    Caverzasio J; Brown CD; Biber J; Bonjour JP; Murer H
    Am J Physiol; 1985 Jan; 248(1 Pt 2):F122-7. PubMed ID: 3970160
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Localization of the calcium-regulated citrate transport process in proximal tubule cells.
    Hering-Smith KS; Mao W; Schiro FR; Coleman-Barnett J; Pajor AM; Hamm LL
    Urolithiasis; 2014 Jun; 42(3):209-19. PubMed ID: 24652587
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NMR-visible intracellular P(i) and phosphoesters during regulation of Na(+)-P(i) cotransport in opossum kidney cells.
    Barac-Nieto M; Spitzer A
    Am J Physiol; 1994 Oct; 267(4 Pt 1):C915-9. PubMed ID: 7943285
    [TBL] [Abstract][Full Text] [Related]  

  • 30. p-Aminohippurate transport at the apical membrane in the OK kidney epithelial cell line.
    Habu Y; Yano I; Hashimoto Y; Saito H; Inui K
    Pharm Res; 2002 Dec; 19(12):1822-6. PubMed ID: 12523660
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Increases in transepithelial vectorial Na+ transport facilitates Na+-dependent L-DOPA transport in renal OK cells.
    Silva E; Gomes P; Soares-da-Silva P
    Life Sci; 2006 Jul; 79(8):723-9. PubMed ID: 16600308
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of microtubules in the adaptive response to low phosphate of Na/Pi cotransport in opossum kidney cells.
    Hansch E; Forgo J; Murer H; Biber J
    Pflugers Arch; 1993 Feb; 422(5):516-22. PubMed ID: 8474853
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification and expression analysis of type II and type III P
    Guillén N; Caldas YA; Levi M; Sorribas V
    Exp Physiol; 2019 Jan; 104(1):149-161. PubMed ID: 30379374
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glutathione transport in human retinal pigment epithelial (HRPE) cells: apical localization of sodium-dependent gsh transport.
    Kannan R; Tang D; Hu J; Bok D
    Exp Eye Res; 2001 Jun; 72(6):661-6. PubMed ID: 11384154
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Absence of a transcellular oxalate transport mechanism in LLC-PK1 and MDCK cells cultured on porous supports.
    Verkoelen CF; Romijn JC; de Bruijn WC; Boevé ER; Cao LC; Schröder FH
    Scanning Microsc; 1993 Sep; 7(3):1031-8; discussion 1038-40. PubMed ID: 8146604
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hormonal regulation of sodium-dependent phosphate transport in opossum kidney cells.
    Silverstein DM; Spitzer A; Barac-Nieto M
    Horm Res; 2000; 54(1):38-43. PubMed ID: 11182634
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Calcium-sensing receptor regulation of PTH-inhibitable proximal tubule phosphate transport.
    Ba J; Brown D; Friedman PA
    Am J Physiol Renal Physiol; 2003 Dec; 285(6):F1233-43. PubMed ID: 12952858
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Basolateral choline transport in isolated rabbit renal proximal tubules.
    Dantzler WH; Evans KK; Wright SH
    Pflugers Arch; 1998 Nov; 436(6):899-905. PubMed ID: 9799405
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evidence for a PTH-independent humoral mechanism in post-transplant hypophosphatemia and phosphaturia.
    Green J; Debby H; Lederer E; Levi M; Zajicek HK; Bick T
    Kidney Int; 2001 Sep; 60(3):1182-96. PubMed ID: 11532115
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of confluence on phosphate transport capacity in cultured renal cell lines.
    Scheinman SJ
    J Cell Physiol; 1988 Apr; 135(1):122-6. PubMed ID: 3366788
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.